
SPORTSCIENCE · sportsci.org  

Perspectives / Research Resources  

Estimating Sample Size for Magnitude-Based Inferences 
Will G Hopkins 

Sportscience 10, 63-70, 2006 (sportsci.org/2006/wghss.htm) 
Sport and Recreation, AUT University, Auckland 0627, New Zealand. Email. Reviewers: Greg Atkinson, Research Institute 
for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, UK; Alan M Batterham, School of 
Health and Social Care, Teesside University, Middlesbrough TS1 3BA, UK. 
 

Sample-size estimation based on the traditional method of statistical signifi-
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world significance, which requires interpretation of magnitude of an outcome. I 
present here a spreadsheet using two new methods for estimating sample size 
for such studies, based on acceptable uncertainty defined either by the width of 
the confidence interval or by error rates for a clinical or practical decision aris-
ing from the study. The new methods require sample sizes approximately one-
third those of the traditional method, which is included in the spreadsheet. The 
following issues are also addressed in this article: choice of smallest effect, 
sample size with various designs, sample size "on the fly", dealing with subop-
timal sample size, effect of validity and reliability of dependent and predictor 
variables, sample size for comparison of subgroups, sample size for individual 
differences and responses, sample size when adjusting for subgroups of une-
qual size, sample size for more than one important effect, the number of re-
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studies and case series, and estimation of sample size by simulation. 
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Update Jan 2018. I previously asserted that ade-

quate precision for the estimate of the standard 

deviation representing individual responses in a 

controlled trial was similar to that for the subject 

characteristics that potentially explain the individual 

responses. That assertion was incorrect. In an In-

brief item in the 2018 issue of this journal (Hopkins, 

2018), I show that the required sample size in the 

worst-case scenario of zero mean change and zero 

individual responses is 6.5n2, where n is the sample 

size for adequate precision of the mean. The bullet 

point on individual responses has been updated 

accordingly. The conclusion is that sample size for 

adequate precision of individual responses is im-

practically large. Researchers should aim instead for 

the more practical sample size for adequate precision 

of potential effect modifiers and mediators that 

might explain individual responses. The sample size 

for effect modifiers and mediators is "only" 4× the 

sample size for adequate precision of the mean 

change, as explained in the updated bullet point for 

analyses of subgroups and continuous moderators 

and a new bullet point for mediators. The standard 

deviation for individual responses should still be 

assessed, and for sufficiently large values it will be 

clear. 

Update June 2017. The spreadsheet now takes into 

account the reduction in sample size that occurs 

when the control treatment in a crossover and the 

pretest in a controlled trial is included as a co-

variate, which it always should be. The usual error 

variance is reduced by a factor 1–e2/(2SD2), where 

SD is the observed between-subject SD and e is the 

typical (standard) error of measurement. When SD 

>> e (a highly reliable measure) there is no reduc-

tion, but at the other extreme, SD = e (i.e., there are 

no real differences between subjects–a very unrelia-

ble measure, with intraclass or retest correlation = 

0), the error variance and therefore sample size is 

reduced by up to one half, depending on the degrees 

of freedom of the t statistics in the remaining formu-

lae.  

Update April 2016. Sample sizes for designs where 

the dependent variable is a count of something have 

now been updated to include crossovers and con-

trolled trials. The estimates are based by default on 

the normal approximation to the Poisson distribu-

tion, whereby the observed between-subject SD of 

the counts is the square root of the mean count (the 

expected SD when the counts in each subject arise 

from independent events). The estimates also allow 

for "over-dispersion" and "under-dispersion" of the 
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counts. With over-dispersion, underlying real differ-

ences between subjects' counts produce an observed 

between-subject SD greater than the square root of 

the mean count. With under-dispersion, which is less 

common, the observed SD is less than expected, 

possibly because of sampling variation rather than 

any real under-dispersion in the counts.  

This panel in the spreadsheet is configured for 

smallest effects defined by a ratio of the counts, the 

default being 0.9 or its inverse 1.11. For smallest 

effects defined by standardization, just use the earli-

er panel highlighted in yellow, according to which a 

smallest effect of 0.20 requires ~272 subjects 

(136+136) for a group comparison or parallel-groups 

controlled trial (or a similar number for a crossover 

and 4x as many for a pre-post controlled trial). 

Update October 2015. I have added a comment cell 

with extra information about smallest changes and 

differences in means of continuous variables in 

crossovers, controlled trials, and group comparisons. 

In particular, I now indicate how to take into account 

error of measurement when using standardization, 

according to which the smallest difference or change 

is 0.2 of the between-subject standard deviation 

(SD). In most settings, the SD should be the true or 

pure SDP, not the observed SDO, which is inflated by 

the typical or standard error of measurement e: SDO
2 

= SDP
2 + e2. Hence, the smallest difference or 

change is 0.2SDP = 0.2(SDO
2 – e2) or 0.2SDOr, 

where r = SDP
2/SDO

2 is the intraclass or retest corre-

lation. In other words, if the observed SD is used to 

define the smallest important difference or change, it 

should be multiplied by the square root of the retest 

correlation. The time-frame of the error of meas-

urement (or retest correlation) should reflect the 

time-frame of the effect to be studied. If you are 

interested in acute differences or changes, the typical 

error or retest correlation should come from a short-

term reliability study that effectively measures tech-

nical error only. If instead you are interested in 

stable differences or changes over a defined period 

(e.g., six months), then the smallest important 

change in the mean (or difference the mean, in a 

cross-sectional study) should come from the pure 

between-subject SD over such a period.  

Update August 2014. Cells for calculating the rate 

of various kinds of magnitude-based outcome when 

the true effect is null worked previously for clinical 

outcomes but did not give correct rates for non-

clinical outcomes. These cells have been simplified 

and updated to allow estimation of rates for any true 

value. The effect of changing the sample size on the 

observed change required for a clear outcome has 

now also been added. 

Updates June 2013. Within-subject SD (typical or 

standard error of measurement) is needed to estimate 

sample size for crossovers and pre-post controlled 

trials, but it's often hard to find reliability studies 

with a dependent variable and time between trials 

comparable with those in your intended study. How-

ever, you can often find comparable crossovers or 

controlled trials, so I have devised a panel in the 

sample-size spreadsheet to estimate within-subject 

SD from such studies. The published studies needn't 

have the same kind of intervention, but try to find 

some with similar time between trials and similar 

subjects, because the approach is based on the as-

sumption that the error in the published study or 

studies is similar to what will be in your study. It's 

also assumed that individual responses to the treat-

ment in your study will be similar to those in your 

study. This assumption may be more realistic or 

conservative than the usual approach of using the 

error from a reliability study, in which there are of 

course no individual responses. You could address 

this issue in your Methods section where you justify 

sample size, if you use this approach. 

Updates June 2011. A panel for a count outcome is 

now added to the spreadsheet. The smallest im-

portant effect is shown as a count ratio of 1.1, as 

explained in the article on linear models and effect 

magnitudes in the 2010 issue of Sportscience.  

The panel for event outcomes now allows inclusion 

of smallest beneficial and harmful effects as risk 

difference, odds ratio and hazard ratio (in addition to 

the risk ratio that was there originally). The calcula-

tions for the event outcomes are based on assump-

tion of a normal distribution for the log of the odds 

ratio, and the sample sizes for risk difference, hazard 

ratio and risk ratio are computed by converting the 

smallest effects for these statistics into odds ratios.  

Sample-size estimation when there is repeated 

measurement of a dependent variable representing a 

count or an event is not yet included in the spread-

sheet. 

There is now a bullet point on the issue of the sam-

ple size needed in a reliability pilot study. 

The reviewer of these updates (Greg Atkinson) 

suggested I include a comment about sample size for 

equivalence studies, which are aimed at showing 

that two treatments are practically equivalent. To put 

it another way, what is the sample size for accepta-

ble uncertainty in the estimate of the difference in 

the effects of the two treatments? My novel ap-

proaches to sample-size estimation address precisely 

this question.  

Update June 2008: a bullet point on likelihood of 

an inconclusive outcome with an optimal sample 

size; also, slideshow now replaced with an updated 

version presented at the 2008 annual meeting of the 

American College of Sports Medicine in Indianapo-

lis (co-presented by Stephen W Marshall, who made 

useful suggestions for changes to some slides). 
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Update Mar 2008: advice on how to estimate a 

value for the smallest effect that a suboptimal sam-

ple size can estimate adequately now added to ap-

propriate bullet point; also more in the bullet point 

on choosing smallest effects and their impact on 

sample size. 

Update Nov 2007: a bullet point on sample size for 

adequate characterization of effect modification; that 

is, the sample size to determine the extent to which 

the effect differs in subgroups or between subjects 

with different characteristics. 

Updates to Oct 2007: a bullet point on estimation of 

sample size when you have more than one important 

effect in a study and you want to constrain the 

chance of error with any of them; a paragraph recon-

ciling 90% confidence intervals with Type 1 and 2 

errors of 0.5% and 25%; a minor addition to the 

bullet point on sample size on the fly; other minor 

edits. 

We study a sample of subjects to find out 

about an effect in a population. The bigger the 

sample, the closer we get to the true or popula-

tion value of the effect. We don't need to study 

the entire population, but we do need to study 

enough subjects to get acceptable accuracy for 

the true value.  

"How many subjects?" is a question I am of-

ten called on to answer, usually before a project 

is submitted for ethical approval. Sample size is 

an ethical issue, because a sample that is too 

large represents a needless waste of resources, 

and a sample that is too small will also waste 

resources by failing to produce a clear outcome. 

If the study involves exposing subjects to pain 

or risk of harm, an appropriate sample size is 

ethically even more important. Applications for 

ethical approval of a study and the methods 

section of most manuscripts therefore require 

an estimate of sample size and a justification 

for the estimate.  

Free software is available at various sites on 

the Web to estimate sample size using the tradi-

tional approach based on statistical signifi-

cance. However, my colleagues and I now 

avoid all mention of statistical significance in 

our publications, at least in those I coauthor. 

Instead, we make an inference about the im-

portance of an effect, based on the uncertainty 

in its magnitude. See the article by Batterham 

and Hopkins (2005a) for more. I have therefore 

devised two new approaches to sample-size 

estimation for studies in which inferences are 

based on magnitudes. In this article I explain 

the traditional and new approaches, and I pro-

vide a spreadsheet for the estimates. I also ex-

plain various other issues in sample-size esti-

mation that need to be understood or taken into 

account when designing a study.  

While preparing a talk on sample-size esti-

mation in 2008, I realized that there is a kind of 

unified theory that ties together all methods of 

sample-size estimation, as follows. In research, 

we make inferences about effects. The infer-

ence results in a decision or declaration about 

the magnitude of the effect, usually the smallest 

magnitude that matters. Whatever way the deci-

sion goes, we could be wrong, so there are two 

kinds of error. We estimate a sample size that 

keeps both error rates acceptably low. 

Sample Size for Statistical Significance 

According to this traditional approach, you 

need a sample size that would produce statisti-

cal significance for an effect most of the time, if 

the true value of the effect were the smallest 

worthwhile value. Stating that an effect is sta-

tistically significant means that the observed 

value of the effect falls in the range of extreme 

values that would occur infrequently (<5% of 

the time, for significance at the 5% or 0.05 

level) if the true value were zero or null. The 

value of 5% defines the so-called Type I error 

rate: the chance that you will declare a null 

effect to be significant. "Most of the time" is 

usually assumed to be 80%, a number that is 

sometimes referred to as the power of the study. 

A power of 80% can also be re-expressed as a 

Type II error rate of 20%: the chance that you 

will fail to get statistical significance for the 

smallest important effect. I deal with the choice 

of the value of this effect later. 

The traditional approach works best when 

you use the sample size as estimated, and when 

the values of any other parameters required for 

the calculation (e.g., error of measurement in a 

pre-post controlled trial, incidence of disease in 

a cohort study) turn out to be correct. In such 

rare cases you can interpret a statistically signif-

icant outcome as clinically or practically im-

portant and a statistically non-significant out-

come as clinically or practically trivial. When 

the sample size is different from that calculated, 

and when other effects are estimated from the 

same data, statistical and clinical significance 

are no longer congruent. In any case, I have 

found that Type I and II errors of 5% and 20% 

lead to decisions that are too conservative 
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(Hopkins, 2007). Some other approach is need-

ed to make inferences about the real-world 

importance of an outcome and to estimate sam-

ple sizes for such inferences. 

Sample Size for Magnitude-Based Inferences 

I have been aware of this problem for about 

10 years, during which I have devised two ap-

proaches that seem to be suitable. Two years 

ago I did an extensive literature search but was 

unable to find anything similar, although it is 

apparent that a Bayesian approach can achieve 

what I have achieved and more (e.g., Joseph et 

al., 1997). However, I have yet to see the 

Bayesian approach presented in a fashion that 

researchers can access, understand, and use. A 

recent review of sample-size estimation was 

entirely traditional (Julious, 2004). 

I have worked my approaches into a spread-

sheet that hopefully researchers can use. I have 

included the traditional approach and checked 

that it gives the same sample sizes as other tools 

(e.g., Dupont and Plummer's software). The 

new methods for estimating sample size are 

based on (a) acceptable error rates for a clinical 

or practical decision arising from the study and 

(b) adequate precision for the effect magnitude. 

I presented these methods as a poster at the 

2006 annual conference of the American Col-

lege of Sports Medicine (Hopkins, 2006a).  

For (a) I devised two new types of error: a 

decision to use an effect that is actually harmful 

(a Type 1 clinical error), and a decision not to 

use an effect that is actually beneficial (a Type 

2 clinical error). I then constructed a spread-

sheet using statistical first principles to calcu-

late sample sizes for chosen values of Type 1 

and 2 errors (e.g., 0.5% and 25% respectively), 

for chosen smallest beneficial and harmful 

values of outcome statistics in various straight-

forward designs (changes or differences in 

means in controlled trials or cross-sectional 

studies, correlations in cross-sectional studies, 

risk ratios in cohort studies, and odds ratios in 

case-control studies), and for chosen values of 

other design-specific statistics (error of meas-

urement, between-subject standard deviation, 

proportion of subjects in each group, and inci-

dence of disease or prevalence of exposure). 

The calculations are based on the usual assump-

tion of normality of the sampling distribution of 

the outcome statistic or its log transform.  

For (b) I reasoned that precision is adequate 

when the uncertainty in the estimate of an out-

come statistic (represented by its confidence 

interval) does not extend into values that are 

substantial in both a positive and a negative 

sense when the sample value of the statistic is 

zero or null. Sample sizes are then derived from 

the spreadsheet by choosing equal Type 1 and 2 

clinical errors (e.g., 5% for a 90% confidence 

interval, or 2.5% for a 95% confidence inter-

val). Sample sizes for Type 1 and 2 clinical 

errors of 0.5% and 25% are almost identical to 

those for adequate precision with a 90% confi-

dence interval, which in turn are only one-third 

of traditional sample sizes for the usual default 

Type I and II statistical errors of 5% and 20%. 

For adequate precision with a 95% confidence 

interval, the sample sizes are approximately 

half those of the traditional method. 

Perceptive readers may wonder if there is a 

problem with providing 90% confidence inter-

vals in a paper and using them to make calls 

about effects being clear, while at the same time 

making a decision to use an effect only if the 

chance of harm is <0.5% (which is equivalent 

to a 99% rather than a 90% confidence interval 

not overlapping into harmful values). Although 

the sample sizes estimated by both methods are 

practically identical, there will indeed be occa-

sions when an effect is conclusive by one 

method but inconclusive by another. An effect 

can also be clear and trivial on the basis of a 

90% confidence interval but decisive and clini-

cally useful on the basis of chances of benefit 

and harm. It is easy to generate these scenarios 

using the spreadsheet for confidence limits and 

clinical chances (Hopkins, 2007). 

Included in the spreadsheet are confidence 

limits and quantitative and qualitative chances 

of benefit and harm for any chosen values of 

the outcome statistic. The default values shown 

in the spreadsheet are the calculated "decision" 

values: observed values greater than the deci-

sion value will lead you to decide that the effect 

is clinically beneficial. (The decision values are 

analogous to the "critical" values of the tradi-

tional method of sample-size estimation, above 

which observed values will be statistically sig-

nificant.) The confidence limits and chances of 

benefit and harm for the decision values serve 

as a check on the accuracy of the formulae I 

devised to estimate the sample sizes. You will 

see that the confidence limits and clinical 

chances provided by the spreadsheet are fully 

consistent with the Type 1 and 2 clinical errors.  

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize
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Also included are outcomes of studies for 

the estimated or any other sample size when the 

true effect is null (zero for differences in means, 

zero for correlation coefficients, 1.0 for rate 

ratios). For the sample size given by the default 

Type 1 and 2 errors of 0.5% and 25%, you will 

see that the chances of deciding to use a null 

effect are appreciable (up to 17%). Fortunately, 

for smaller sample sizes this figure declines 

rapidly. The chance of observing non-trivial 

outcomes that appear to be clear is the 10% you 

would expect for 90% confidence limits with a 

true null effect, when the sample size is opti-

mal. This figure may seem high, but it is less 

problematic when you express these non-trivial 

outcomes with their full probabilities. As can be 

seen from the spreadsheet, only ~2.2% of the 

outcomes would be "likely [or probably] non-

trivial", and <0.1% would be "very likely non-

trivial". Thus 7.8% of the 10% would be "pos-

sibly [or maybe] non-trivial", which seems 

acceptable. With suboptimal sample sizes the 

"likely non-trivial" outcomes balloon out to a 

maximum of 17%, so you will need to be cau-

tious about borderline clear outcomes when 

your sample size is much smaller than it ought 

to be. Of course, if you use more than the esti-

mated sample size, the error rates are smaller.  

General Sample-Size Issues 

Whether you use the spreadsheet for the tra-

ditional or new approaches, there are several 

important sample-size issues you should know 

about when designing a study. Some of these 

are implicit in the spreadsheet, but you will 

need to take others into account yourself. 

• Sample-size estimation is challenging for the 

average researcher, so mistakes are common. 

Check your estimate by comparing it with 

sample sizes in published studies that have 

measures, subjects, and design similar to 

yours.  

• You can justify a sample size on the grounds 

that it is similar to those in similar studies 

that produced clear outcomes, but be aware 

that effects are clear in many studies because 

the effects are substantial. See how wide the 

confidence interval is in these studies, using 

my spreadsheet (Hopkins, 2007) to generate 

it, if necessary; if your effect turns out to be 

smaller but with a confidence interval of simi-

lar width, will your effect be clear or will you 

need a larger sample? 

• All methods for estimation of sample size 

need a value for the smallest important ef-

fect. The estimates are sensitive to the value: 

halving it results in a quadrupling of sample 

size. Your justification of sample size must 

therefore include a justification of choice of 

the smallest important effect. For most con-

tinuous measures the default can be Cohen's 

thresholds of 0.20 for a standardized differ-

ence or change in means and a correlation of 

0.10. In observational studies the resulting 

sample size is ~270 for the defaults of my de-

fault methods. A reasonable default for a haz-

ard, risk or odds ratio in an intervention is 

~1.10-1.20, because a 10-20% change in the 

incidence of an injury or illness would affect 

one or more groups in a community, however 

rare the condition. A risk ratio of this order is 

quantifiable in a well-controlled large-scale 

intervention, but expert epidemiologists con-

sider that biases inherent in most cohort and 

case-control studies effectively set the small-

est believable risk ratio in such studies to ~3.0 

(Taubes, 1995). This limitation is bad news 

for public health but good news for research-

ers who can’t afford huge sample sizes. 

Smallest effects for measures directly related 

to the performance of solo athletes are ~0.5 of 

the competition-to-competition variability in 

performance (Hopkins, 2004; Hopkins, 

2006b); the resulting sample sizes are usually 

many times larger than most researchers use. 

• Sample size depends on the design. Non-

repeated measures studies (cross-sectional, 

prospective, case-control) usually need hun-

dreds of subjects. Repeated-measures inter-

ventions (crossovers and controlled trials) 

usually need scores of subjects. Crossovers 

need less than parallel-group controlled trials 

(down to one quarter), provided reliability 

does not worsen too much during the washout 

period. These assertions are easily verified 

with the spreadsheet. If you have limited ac-

cess to subjects or limited time or resources, 

you should choose a design and research 

question to accommodate the number you can 

investigate. 

• To take account of any clustering of subjects, 

you can in theory inflate sample size by a fac-

tor of 1+r(c-1), where r is the intracluster cor-

relation coefficient and c is the mean cluster 

size. It follows that you should keep the clus-

ter size as small as possible. The formula for r 

is (between)/(between + within), where be-
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tween and within are the pure between-cluster 

variance and the within-cluster variance re-

spectively. As such, r is difficult to guestimate 

and would need to be estimated in an explora-

tory study. For a repeated-measures design the 

r is for change scores, so the exploratory study 

would have to be done with the intended in-

terventions–usually an impractical option. 

• Sample-size estimates for prospective studies 

and controlled trials should be inflated by 10-

30% to allow for drop-outs, depending on 

the demands placed on the subjects, the dura-

tion of the study, and incentives for compli-

ance.  

• A larger true effect needs a smaller sample 

size. You can understand this assertion by 

considering sample size estimated via ac-

ceptable uncertainty. The confidence interval 

for a trivial effect has to be sufficiently nar-

row not to overlap small positive and negative 

values, whereas the confidence interval for a 

large positive or negative effect can be much 

wider before it overlaps small negative or pos-

itive values. But the width of the confidence 

interval is approximately inversely propor-

tional to the square root of the sample size, so 

the wider confidence interval for larger effects 

implies a smaller sample size. When you have 

to use a small sample size, it follows that you 

will still get a clear outcome, if the true effect 

is sufficiently large. On the other hand, if the 

outcome is unclear, you will find it more dif-

ficult to publish the work. The spreadsheet has 

instructions on how to estimate sample size 

for larger effects.  

• The relationship between effect magnitude 

and sample size makes it possible to deter-

mine sample size "on the fly", whereby you 

study a series of cohorts of subjects until you 

get a clear outcome. This approach, also 

known as a group-sequential design, is a prac-

tical way to deal with the various uncertainties 

in the estimation of sample size; it is also eth-

ically superior to using a fixed sample size, 

because it reduces waste of resources and risk 

to subjects. When statistical significance or 

lack of it is used to terminate sampling, the 

group-sequential approach is known to pro-

duce biased outcomes and inflated error rates, 

but software is available to avoid these prob-

lems. (See Rogers et al., 2005) The extent of 

error and bias when adequate precision and 

acceptable clinical error rates are used to ter-

minate sampling needs to be investigated. 

Meanwhile, estimate the approximate sample 

size for an additional cohort by assuming the 

true value of the effect is the value in subjects 

already assayed, then see how much narrower 

the confidence interval needs to be for a clear 

outcome with this effect. The width of the 

confidence interval is inversely proportional 

to the square root of the sample size, so some 

simple maths will provide an estimate of the 

number of extra subjects. Note that this sam-

ple size will give only a 50% chance of a clear 

outcome, so you may need yet another cohort.  

• An unavoidably suboptimal sample size (i.e., 

smaller than the size estimated for acceptable 

errors with the smallest important effect) is 

ethically defensible if the true effect is likely 

to be large enough for the outcome to be clear. 

You can also argue that an unclear outcome 

with a sample size that isn’t way too small 

will still set useful limits on the likely magni-

tude of the effect and will therefore be worth 

publishing, because it will contribute to a me-

ta-analysis. To obtain a value for the smallest 

effect your sample size will estimate with ac-

ceptable confidence, change the value of the 

smallest important effect in the accompanying 

spreadsheet until it gives your sample size. 

Provide this value and its confidence interval 

in a proposal, ethics application and Methods 

section of a manuscript. Use the confidence 

interval to comment on the “useful limits” in 

the proposal or ethics application, if you end 

up observing a trivial effect. 

• Even optimal sample sizes can produce in-

conclusive outcomes, thanks to sampling var-

iation. The likelihood of such an outcome, 

which I have estimated by simulation, is at 

most ~10%. For the approaches based on sta-

tistical and clinical significance, this maxi-

mum occurs with small sample sizes and ap-

parently when the true value is equal to the 

critical and decision value respectively, while 

for the confidence-interval approach it occurs 

when the true value is null. Interested academ-

ics can download a zip file (9 MB) of spread-

sheets showing the simulations. The spread-

sheets can be tweaked to show that increasing 

the sample size by ~25% makes the likelihood 

of an inconclusive outcome negligible. 

• For non-repeated measures designs, sample 

inconclusive_optimal_sample.zip
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size depends on validity of the dependent 

variable. This principle follows from the fact 

that the random error represented by less-

than-perfect validity increases the uncertainty 

in the outcome statistic, so more subjects are 

needed for acceptable uncertainty. From first 

principles, the sample size is proportional to 

1/v2 = 1+e2/SD2, where v is the validity corre-

lation coefficient, e is the error of the esti-

mate, and SD is the between-subject standard 

deviation of the criterion variable in the valid-

ity study. Sample size thus needs to be dou-

bled when the validity correlation is 0.7 and 

quadrupled when it is 0.5. Such adjustments 

are not included in the spreadsheet. 

• With controlled trials and other repeated-

measures designs, sample size is sensitive to 

reliability of the dependent variable, again 

because of the effect of error on uncertainty. 

From statistical first principles, sample size is 

proportional to (1-r) = e2/SD2, where r is the 

test-retest reliability correlation coefficient, e 

is the error of measurement, and SD is the ob-

served between-subject standard deviation. 

Thus sample sizes of only a few subjects are 

theoretically possible for measures of suffi-

ciently high reliability, although you should 

always have at least 10 subjects in each group 

to reduce the chance that the sample substan-

tially misrepresents the population. This effect 

of reliability on sample size is implicit in the 

spreadsheet, because you have to enter the er-

ror of measurement (the within-subject stand-

ard deviation) to get the sample size. 

• The estimate of measurement error used to 

estimate sample size in a repeated-measures 

intervention has to come from a reliability 

study of duration similar to that of the inter-

vention. The resulting sample size may still be 

an underestimate, because any individual re-

sponses to the treatment will effectively in-

flate the error of measurement and thereby 

widen the confidence interval for the treat-

ment effect. Sample size on the fly is one way 

to allow for individual responses.  

• Validity of a predictor variable in any de-

sign has the same effect on sample size as va-

lidity of the dependent variable in a non-

repeated measures design. However, the effect 

of less-than-perfect validity manifests itself as 

a reduction in the magnitude of the effect of 

the predictor, the reduction being proportional 

to v, the validity correlation for the predictor–

hence the need for a larger sample size. The 

so-called correction for attenuation is there-

fore a factor of 1/v (or 1/√r, if reliability error 

is the only source of validity error). In con-

trast, validity and reliability of a dependent 

variable affect the uncertainty of a difference 

or change in a mean, but have no effect on its 

expected magnitude. 

• With designs involving comparison of 

groups (e.g., a parallel-groups controlled tri-

al), make the groups of equal size to give the 

smallest total size. If the size of one group is 

limited only by availability of subjects, a larg-

er number of subjects for the comparison 

group will increase the precision of the out-

come, but more than five times as many sub-

jects in the comparison group gives no further 

practical increase in precision. You can check 

this assertion with the spreadsheet. 

• When you want to compare an outcome be-

tween independent subgroups, a surprising 

consequence of statistical first principles is 

that you will need twice as many subjects in 

each subgroup to get the same precision of 

estimation for the comparison as for either 

subgroup alone, a four-fold increase in sample 

size. Thus, for example, a controlled trial that 

would give adequate precision with 20 sub-

jects would need 40 females and 40 males for 

adequate precision of the comparison of the 

effect between females and males. Compari-

sons of effects in subgroups therefore should 

not be undertaken as a primary aim of a study 

without adequate resources. This sample size 

and rule applies also to the linear modifying 

effect of a continuous predictor, such as 

height of subjects, when its effect is evaluated 

as the effect of 2SD of the predictor (Hopkins, 

2010); that is, the effect for a group of sub-

jects who are 1SD above the mean minus the 

effect on subjects 1SD below the mean.  

• A potential mediator of a treatment effect in 

a crossover or controlled trial is analyzed by 

including its change score as a main-effect 

predictor in the linear model. As such, its re-

quired sample size is twice that of the mean 

effect, or four times if the mediator is includ-

ed as an interaction with the group effect in a 

controlled trial (implying a potentially differ-

ent mechanism in control and experimental 

groups).  
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• In a controlled trial, the magnitude of indi-

vidual responses needs to be determined after 

the subject characteristic(s) that might help to 

explain them have been included as modifiers. 

The magnitude of individual responses is ex-

pressed as a standard deviation (SDIR) free of 

measurement error (e.g., ±2.6% around the 

treatment's mean effect of 1.8%). The sample 

size for adequate precision in the estimate of 

SDIR in the worst-case scenario of zero change 

in the mean and zero SDIR is ~6.5n
2, where 

n is the sample size required for adequate 

precision in the change in the mean. See an 

In-brief item in the 2018 issue of Sportscience 

for the derivation of this formula (Hopkins, 

2018). The standard deviation for individual 

responses is still worth estimating, and for 

sufficiently large values it will be clear. See 

the above bullet point about sample size on 

the fly to determine how much larger your 

sample would need to be to get a clear effect 

for SDIR, if it is unclear. For more on the ne-

glected but increasingly important issue of 

individual responses, see the articles on con-

trolled trials in this journal (Batterham and 

Hopkins, 2005b; Hopkins, 2003; Hopkins, 

2006c; Hopkins, 2015; Hopkins, 2017). 

• Researchers who have difficulty recruiting 

enough subjects of one sex sometimes recruit 

a small proportion of the other sex and ana-

lyze the outcome without regard to sex. This 

approach is misguided. If you do not adjust 

for sex, you bias the mean effect towards that 

of the larger group. But to adjust for sex, you 

average the separate effects for the males and 

females. The resulting effective sample size is 

actually less than that of the larger group, 

when less than 30% of the subjects are in the 

smaller group. Download a simple spread-

sheet I devised to illustrate this point. Conclu-

sion: use subjects of one sex only, or aim for 

proportions of females and males in the sam-

ple that come close to their proportions in the 

population. This conclusion applies to other 

subgroupings. 

• When you investigate more than one effect 

in a study, there is inevitable inflation in the 

chances of making errors. For example, imag-

ine you studied two independent effects and 

found chances of harm and benefit of 0.4% 

and 76% for one effect and 0.3% and 56% for 

the other. If you decide to use both effects, the 

chance of doing harm overall is 0.7%, which 

exceeds the default threshold of 0.5%.  Opting 

to use only the most important or pre-planned 

effect would keep the chance of harm below 

0.5%, but you would thereby fail to use an ef-

fect that has a chance of benefit of either 56% 

or 76%, which is way above the default 

threshold of 25% and represents potential 

waste of a beneficial effect. You could have 

avoided this scenario by using a sample size 

that kept the overall Type 1 and 2 errors to 

<0.5% and <25%. For the worst case of inde-

pendent effects that are on the borderline for 

making a decision one way or the other, the 

spreadsheet provides the sample size when 

you set the Type 1 and 2 errors to 0.5/n% and 

25/n%, where n is the number of independent 

effects. (These values are approximations; ex-

act values are 100[1 – [1-e/100]1/n], where e is 

the Type 1 or 2 percent error, but the simpler 

formulae are accurate enough.) The same 

formulae apply when estimating sample size 

with Type I and II statistical errors. For two 

effects the spreadsheet shows that sample size 

needs to increase by nearly 50%, and for four 

effects the sample size needs to be doubled. If 

the effects are not independent, for example in 

a study where you intend to choose the best of 

three or more treatments, sample size usually 

does not need to be increased to the same ex-

tent. Exactly how big it should be is difficult 

to estimate, so err towards studying too many 

subjects rather than too few.  

• Sample size for a case series is not included 

in the spreadsheet. A case series is aimed at 

establishing norms of specific measures to al-

low confident characterization of future cases 

relative to the norms. (Cases can also refer to 

normal subjects, if the aim is to characterize a 

subject characteristic, such as a skill.) Assum-

ing the measure or an appropriate transform is 

normally distributed, norms are established 

with a mean and SD estimated with adequate 

precision. The uncertainty in the mean needs 

to be less than the default of 0.2 SD, which is 

achieved with a sample size one-quarter that 

of a cross-sectional study, or about 70 subjects 

for 90% confidence limits. This sample size 

also gives uncertainty of 1.15 for the SD, 

which is sometimes used as the smallest im-

portant difference in an SD. Smaller sample 

sizes establish noisier norms, which result in 

less confident characterization of future typi-

cal cases but acceptable characterization of 
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future unusual cases. Larger samples are 

needed to characterize percentiles accurately, 

especially when the measure is not normal 

distributed. 

• The number of repeated observations in a 

single-subject study is analogous to the sam-

ple size for a sample-based study and can be 

estimated using the same procedures. Sample 

size in principle should be increased to take 

account of autocorrelation between repeated 

observations, but it is reasonable to assume 

that the model in the analysis removes most of 

the autocorrelation from the residuals and 

therefore that the sample size need not be in-

creased substantially. The smallest important 

effect used in the calculation should be the 

same as for a sample-based study, because the 

effects that matter for a single subject are still 

the same as for subjects in general. 

• Measurement studies, which characterize 

validity and reliability of any measures and 

factor structure of psychometric inventories, 

are not included in available software for es-

timating sample size. Sample size for such 

studies shows a dependence on magnitude 

similar to that for the other designs. Very high 

reliability or validity (observed error << 

smallest important effect) can be character-

ized with as few as 10 subjects, because the 

upper confidence limit for the true error is still 

negligible. More modest observed validity or 

reliability (correlations ~0.7-0.9; errors of 

measurement of ~2-3 the smallest important 

effect) need samples of 50-100 subjects for 

reasonable confidence that the true values of 

validity or reliability aren't substantially high-

er or lower than the observed values. Studies 

of diagnostic tests require hundreds of sub-

jects to ensure adequate sampling of the vari-

ous subject characteristics that can modify di-

agnostic accuracy. Studies of factor structure 

usually need hundreds of subjects, because the 

alpha reliability of the factors is usually mod-

est. 

• Sample size for a reliability pilot study 

aimed at determining error of measurement 

for estimation of sample size in a repeated-

measures main study. Sample size in the main 

study is inversely proportional to the square of 

the error of measurement. It follows that un-

certainty in the error of measurement estimat-

ed in the pilot study is magnified into uncer-

tainty in the sample size needed for the main 

study. For example, to limit the uncertainty in 

the estimate of sample size in a repeated-

measures study to no more than ±20% (or a 

 factor of 1.20), the uncertainty in the esti-

mate of error has to be ±9.5% (√1.20). If 

"uncertainty" is 90% confidence limits, the 

spreadsheet for confidence limits (Hopkins, 

2007) shows that the sample size for the relia-

bility study has to be 174, which is unrealisti-

cally high. The smaller sample sizes of <50 

that researchers often use in reliability studies 

is justifiable only if the resulting estimate of 

sample size in the main study turns out to be 

~10-20, because the uncertainty in the esti-

mate of such small sample sizes (e.g., 1.70 

if the pilot study had 20 subjects) can be ac-

commodated by increasing the sample size in 

the main study by ~5-10 subjects. 

• Use of simulation to determine sample size 

for complex designs or analyses, especially 

those involving non-linear models or combi-

nations of repeated measurements or other 

correlated dependent variables. You make 

reasonable assumptions about errors and rela-

tionships between the variables. You then 

generate data sets of various sizes using ap-

propriately transformed random numbers to 

represent the errors and relationships. Finally 

you analyze the data sets to determine the 

sample size that gives acceptable width of the 

confidence interval. An advantage of this ap-

proach is that you have to consider carefully 

the nature of the data and the intended analy-

sis before you begin, which could lead to im-

provements in the design.  It also provides the 

ideal vehicle for a sensitivity analysis, in 

which you explore how changes in parameters 

and errors affect the outcome statistic. 

In conclusion, it is important to point out 

that the approaches to sample-size estimation 

described here provide estimates based on in-

ferences about a population mean effect. When 

the effect is an intervention, the outcome for an 

individual receiving the intervention will be 

different from the mean effect and will depend 

on individual responses to the intervention. To 

calculate chances of benefit and harm for the 

individual, we therefore need a sample size that 

characterizes individual responses adequately. 

As yet there is no spreadsheet and, as far as I 

know, no published formulae for this purpose. 

../resource/stats/xcl.xls


 

 

72 

I have created a slideshow to summarize 

most of the above principles, which you can 

download in Powerpoint or PDF format. You 

should view the slideshow as a full-screen 

presentation, especially for those slides explain-

ing the statistical basis of the traditional and 

new approaches. The spreadsheet itself has 

extensive comments. 
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