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Magnitude-based inference (MBI) has again been subjected to detailed scrutiny by an 
establishment statistician in one of our top journals. Kristin Sainani's critique is on four 
fronts. First, she claims that the probabilistic statements in MBI, such as the treatment is 
possibly beneficial, are invalid, because these are Bayesian statements and MBI is not 
Bayesian. This claim is false, because MBI is a legitimate form of Bayesian inference 
with a minimally informative dispersed uniform prior, so the probabilities provided by MBI 
are objective trustworthy estimates of uncertainty in the true value. Sainani supports in-
stead "qualitative judgments" of the lower and upper confidence limits, without realizing 
that the level of confidence renders such judgments quantitative, and they are in fact 
MBI. Secondly, she regards as "specious" the logic in MBI that there is no Type-I error 
when the true effect is trivial and the MBI outcome is likely substantial, because the effect 
is also unlikely trivial (e.g., with a probability of 0.06). But according to her logic, "spe-
cious" would also apply to failure to declare a Type-I error in null-hypothesis significance 
testing (NHST), when the true effect is zero and the outcome is non-significant (e.g., with 
a p value of 0.06). She shows that our definitions of error "wildly underestimate" Type-II 
error rates, but her estimates are based on the null hypothesis, which is no longer a 
trustworthy approach to inference. Thirdly, she highlights the high Type-I error rates for 
clinical MBI, yet these are comparable with those of NHST over a range of small sample 
sizes and trivial effect magnitudes, and they occur mostly with effects presented to the 
clinician or practitioner as only possibly beneficial. Finally, she claims that unclear out-
comes in MBI (when the uncertainty allows for substantial positive and negative effects, 
or benefit and harm) should be counted as inferential errors. We reject this claim, on the 
grounds that an error does not occur until a decision is made about the true magnitude. 
We previously adopted this reasoning even-handedly with conservative NHST and 
showed the error rates, rates of decisive outcomes, and publication bias were generally 
superior in MBI. She makes several other crucial errors, including her claim that publica-
tions we cited as evidence supporting the theoretical basis of MBI "do not provide such 
evidence." Her recognition of several possible contributions of MBI to the debate on in-
ference is followed immediately by its dismissal as unsound or demonstrably false, while 
many other valuable original contributions are simply overlooked. We point out the dam-
age to meta-analyses and young researchers' careers that will ensue, if her critique re-
sults in journal editors banning MBI. We conclude that her recommendation that MBI 
should not be used is itself based on unsound or demonstrably false assertions. Re-
searchers can continue to use MBI in the knowledge that it represents a valuable ad-
vance on NHST, with the benefits of Bayesian probabilistic inference and without the 
drawback of a subjective prior. KEYWORDS: Bayesian statistics, effect, clinical im-
portance, likelihood, null-hypothesis significance test, p value, probability, sample, small-
est important difference, statistical significance. 
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Authors' note. This article was published as a draft 
with post-publication peer review. We invited readers 
to make supportive or critical comments using this 
template and submit as an attachment in an email to 
us. We published comments via this page following 
any minor editing and interaction. This version incor-
porates points raised in comments to date (24 August 
2018). Future comments may be included in a further 

update. The draft version with tracked changes result-
ing in this version is available as a docx here. 
The changes from the draft version are as follows… 
• From the comments of Little (2018) and Lakens 

(2018), and our response (Batterham and Hopkins, 
2018), MBI can be described as reference Bayesian 
inference with a dispersed uniform prior. Two par-
agraphs starting here have been augmented. 
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• The comment of Wilkinson (2018) supports our in-
terpretation of errors and error rates in MBI.  We 
see no need to modify our article in this respect. 

• When the editor of Medicine and Science in Sports 
and Exercise announced rejection of manuscripts 
using MBI, we published a comment (Hopkins and 
Batterham, 2018) recommending use of the Bayes-
ian description of MBI. We noted that the proba-
bility thresholds used by the Intergovernmental 
Panel on Climate Change are remarkably similar to 
those of MBI, and we have updated this article ac-
cordingly here. We also critiqued an attack on MBI 
by a journalist who used Sainani's erroneous error 
rates in a news item. We noted two potentially 
damaging effects of the news item and of Sainani's 
critique and include them here as an extra para-
graph, followed by a paragraph on avoiding under-
powered studies.  

• The comment of Buchheit (2018) highlights the 

plight of a researcher who understands and has 
opted for MBI, and for whom (in the absence of 
viable alternatives) a return to p values is unthink-
able. His comment represents an endorsement of 
MBI by an experienced practitioner-researcher 
who suffered under p values. No update of this ar-
ticle is required. 

• Some researchers still need to understand how 
MBI works and how p values fail to adequately 
represent uncertainty in effects. One of us (WGH) 
therefore put together a slideshow and two videos, 
available via this comment (Hopkins, 2018). One 
of the slides is included below, with an explanatory 
paragraph. 

• Soon after publication of this version, someone 
raised the concern that MBI could be viewed as 
promoting unethically underpowered studies. We 
have therefore amended the paragraph about small 
samples. 

Magnitude-based inference (MBI) is an ap-
proach to making a decision about the true or 
population value of an effect statistic, taking into 
account the uncertainty in the magnitude of the 
statistic provided by a sample of the population. 
In response to concerns about error rates with the 
decision process (Welsh and Knight, 2015), we 
recently showed that MBI is superior to the tra-
ditional approach to inference, null-hypothesis 
significance testing (NHST) (Hopkins and 
Batterham, 2016). Specifically, the error rates 
are comparable and often lower than those of 
NHST, the publishability rates with small sam-
ples are higher, and the potential for publication 
bias is negligible.  

A statistician from Stanford University, Kris-
tin Sainani, has now attempted to refute our 
claims about the superiority of MBI to NHST 
(Sainani, 2018). We acknowledge the effort ex-
pended in her detailed scrutiny and welcome the 
opportunity to discuss the points raised in the 
spirit of furthering understanding. Sainani ar-
gues that MBI should not be used, and that we 
should instead "adopt a fully Bayesian analysis" 
or merely interpret the standard confidence in-
terval as a plausible range of effect magnitudes 
consistent with the data and model. We have no 
objection to researchers using either of these two 
approaches, if they so wish. Nevertheless, we 
have shown before and show here again that 
MBI is a valid, robust approach that has earned 
its place in the statistical toolbox.  

The title of Sainani's critique refers to "the 
problem" with magnitude-based inference 
(MBI), but in the abstract she claims that there 

are several problems with the Type-I and Type-
II error rates. In the article itself, she begins her 
synopsis of MBI with another apparent problem: 
that the probabilistic statements in MBI about 
the magnitude of the true effect are invalid. 
Throughout the critique are numerous inconsist-
encies and mistakes. We solve here all her per-
ceived problems, highlight her inconsistencies 
and correct her mistakes. 

Should researchers make probabilistic asser-
tions about the true (population) value of ef-
fects? Absolutely, especially for clinically im-
portant effects, where implementation of a pos-
sibly beneficial effect in a clinical or other ap-
plied setting carries with it the risk of harm. We 
use the term risk of harm to refer to the probabil-
ity that the true or population mean effect has the 
opposite of the intended benefit, such as an im-
pairment rather than an enhancement of a meas-
ure of health or performance. It does not refer to 
risk of harm in a given individual, which re-
quires consideration of individual differences or 
responses, nor does it refer to risk of harmful 
side effects, which requires a different analysis. 
Magnitude-based inference is up-front with the 
chances of benefit and the risk of harm for clini-
cal effects, and the chances of trivial and sub-
stantial magnitudes for non-clinical effects. This 
feature is perhaps the greatest strength of MBI.  

Sainani states early on that "I completely agree 
with and applaud" the approach of interpreting 
the range of magnitudes of an effect represented 
by its upper and lower confidence limit, when 
reaching a decision about a clinically important 
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effect. But, according to Sainani, "where Hop-
kins and Batterham's method breaks down is 
when they go beyond simply making qualitative 
judgments like this and advocate translating con-
fidence intervals into probabilistic statements, 
such as the effect of the supplement is 'very 
likely trivial' or 'likely beneficial.' This requires 
interpreting confidence intervals incorrectly, as 
if they were Bayesian credible intervals." We 
have addressed this concern previously 
(Hopkins and Batterham, 2016). The usual con-
fidence interval is congruent with a Bayesian 
credibility interval with a minimally informative 
prior (Burton, 1994; Burton et al., 1998; 
Spiegelhalter et al., 2004). As such, it is an ob-
jective estimate of the likely range of the true 
value, and the associated probabilistic state-
ments of MBI are Bayesian posterior probabili-
ties with a minimally informative prior. The 
post-publication comments of Little (2018) and 
Lakens (2018) further underscore this point. 

Unfortunately, full Bayesians disown us, be-
cause we prefer not to turn belief into an in-
formative subjective prior. Meanwhile, NHST-
trained statisticians disown us, because we do 
not test hypotheses. MBI is therefore well placed 
to be a practical haven between a Bayesian rock 
and an NHST hard place. (Others have attempted 
hybrids of Bayes and NHST, albeit with differ-
ent goals. See the technical notes.) From Bayes-
ians we adapt valid probabilistic statements 
about the true effect, based on the minimally in-
formative dispersed uniform prior. From fre-
quentists (advocates of NHST) we adapted 
straightforward computational methods and as-
sumptions, and we computed error rates for de-
cisions based not on the null hypothesis but on 
sufficiently low or high probabilities for the 
qualitative magnitude of the true effect. The 
name magnitude-based inference therefore 
seems justifiable, but in the Methods sections of 
manuscripts, authors could or should note that it 
is a legitimate form of Bayesian inference with 
the minimally informative dispersed uniform 
prior, citing the present article. The appropriate 
reference for the decision probabilities is the 
progressive statistics article in Medicine and Sci-
ence in Sports and Exercise (2009). Whether the 
resulting error rates are acceptable is an issue we 
will address shortly. 

There is a logical inconsistency in Sainani's 
"qualitative judgment" of confidence intervals. 
In her view, it is not appropriate to make a prob-
abilistic assertion about the true magnitude of 

the effect, but it is appropriate to interpret the 
magnitude of the lower and upper confidence 
limits. The problem with this approach is that it 
all depends on the level of the confidence inter-
val, so she is in fact making a quantitative judg-
ment. Indeed, such judgments are actually noth-
ing more or less than magnitude-based infer-
ence, the only difference being the width of the 
confidence interval. Towards the end of her cri-
tique she cites "an excellent reference on how to 
interpret confidence intervals (Curran-Everett, 
2009)." Here is a quote from that article: "A 
confidence interval is a range that we expect, 
with some level of confidence, to include the true 
value of a population parameter… a confidence 
interval focuses our attention on the scientific 
importance of some experimental result." In the 
three examples he gives, Curran-Everett states 
that the true effect is "probably" within the con-
fidence interval or "could range" from the lower 
to the upper confidence limit. Again, this inter-
pretation is quantitative, with probably and 
could defined by the level of confidence of the 
confidence interval. 

There is a further inconsistency with Sainani's 
applause for qualitative judgments based on the 
confidence interval: the fact that her concerns 
about error rates in MBI would apply to such 
judgments. Consider, for example, a confidence 
interval that overlaps trivial and substantial mag-
nitudes. What is her qualitative judgment? The 
effect could be trivial or substantial, of course. 
Where is the error in that pronouncement? If the 
true effect is trivial, we say there is none, but she 
says there is an unacceptable ill-defined Type-I 
error rate. The only way she can keep a well-de-
fined NHST Type-I error rate is to make a qual-
itative judgment only if the effect is significant. 
In other words, if the confidence interval does 
not overlap the null, she can say that the effect 
could be trivial or substantial, but if it does over-
lap the null, however slightly, she cannot say that 
it could be trivial. Presumably she will instead 
call the magnitude unclear. If that is the process 
of qualitative judgment she has in mind, it is ob-
viously unrealistic.  

Sainani is also inconsistent when she makes 
the following statement: "Hopkins and Batter-
ham's logic is that as long as you acknowledge 
even a small chance (5-25%) that the effect 
might be trivial when it is [truly trivial], then you 
haven't made a Type I error… But this seems 
specious. Is concluding that an effect is 'likely' 
positive really an error-free conclusion when the 
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effect is in fact trivial?" Consider the confi-
dence-interval equivalent of Sainani's statement. 
A small chance that the effect could be trivial 
corresponds to a confidence interval covering 
mostly substantial values, with a slight overlap 
into trivial values, such that the probability of a 
trivial true effect is only 6%, for example. Hence 
we say the effect could be trivial, so no Type-I 
error occurs (Figure 1). Now consider what hap-
pens in NHST. If the 95% confidence interval 
overlaps the null only slightly, with p=0.06, then 

a Type-I error has not occurred (Figure 1). In 
other words, it's the same kind of decision pro- 
cess as for MBI, except that in MBI the null is 
replaced with the smallest important effect. The 
same argument could be mounted for Type-II er-
rors: Sainani does not specifically call our logic 
here specious, but she does show later that our 
definitions "wildly underestimate" the tradi-
tional Type-II error rates. We will not be held 
accountable for error rates based on the null hy-
pothesis. 

 
Figure 1. Examples of confidence intervals and associated inferences to illustrate marginal Type-I er-
rors in non-clinical magnitude-based inference (MBI) and null-hypothesis significance testing 
(NHST). In the MBI examples, the true value is trivial, and the coverage of the 90% confidence inter-
vals is sufficient to produce a trivial true-effect probability of 0.04 (very unlikely trivial, a Type-I error) 
and 0.06 (unlikely trivial, no Type-I error). In the NHST examples, the true value is null, and the 
coverage of the 95% confidence intervals is sufficient to produce a p value of 0.04 (statistically signif-
icant, a Type-I error) and 0.06 (statistically non-significant, no Type-I error). These examples demon-
strate that, by analogy with NHST, there is nothing illogical or specious in declaring no Type-I error 
in MBI when the true effect is trivial and the probability for a trivial true magnitude is 0.05-0.25 
(chances of 5-25%, unlikely). 

 
 

Sainani offers a novel solution to her per-
ceived problem with the definition of MBI Type-
I error: allow for "degrees of error", which inev-
itably makes higher Type-I error rates. But a 
similar inflation of error rates would occur with 
NHST, if degrees of error were assigned to p val-
ues that approach significance. We doubt if her 
solution would solve the problems of the p value 
that are increasingly voiced in the literature; in 
any case, we do not see the need for it with MBI. 
When an effect is possibly trivial and possibly 
substantially positive, that is what the researcher 
has found: it's on the way to being substantially 
positive. Furthermore, for effects with true val-
ues that are close to the smallest important effect, 
the outcome with even very large sample sizes 
will usually be possibly trivial and possibly sub-
stantial. Importantly, a Bayesian analysis with 
any reasonable prior would reach this same con-
clusion, because the prior is inconsequential 

with a sufficiently large sample size (Gelman et 
al., 2014). Now, should such a finding be pub-
lished? Of course, but we advise against making 
inferences with the p value alone, because it will 
be <0.0001 and leave the reader convinced that 
there is a substantial effect. It follows that such 
outcomes with more modest sample sizes should 
also be published. By making a clear possible 
outcome a publishable quantum, you also avoid 
substantial publication bias, because researchers 
get more of their previously underpowered stud-
ies into print with MBI. Adoption of MBI by the 
research community would not result in a chaos 
of publication bias. On the contrary, there would 
be negligible publication bias, and the farcical 
binary division of results into statistically signif-
icant and non-significant at some arbitrary 
bright-line p-value threshold would be con-
signed, along with the null hypothesis, to the 
dustbin of failed paradigms. 
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For researchers, reviewers and journal editors 
who are still undecided about using MBI in pref-
erence to p values, see Figure 2, which is taken 
from the slideshow and second video, available 
via this comment. The figure shows outcomes 
with small samples where the interpretation of 
the magnitude of the confidence limits–that is, 
MBI–provides a succinct and accurate descrip-
tion of the uncertainty in the magnitude of the 
true effect, whereas p values fail. For the two 
outcomes where the conclusion with non-clini-
cal MBI is could be +ive or trivial, one is signif-
icant and the researcher would conclude there is 
an effect, while the other is non-significant and 
the researcher would conclude there is no effect.  

Both conclusions based on the p value are obvi- 
ously wrong; the conclusion with MBI properly 
describes the uncertainty. For the outcome 
where the MBI conclusion is unclear, the p value 
again fails, because non-significance would be 
interpreted as no effect, which does not represent 
the fact that the true value could be substantially 
negative, trivial or substantially positive. We 
have given the conventional NHST interpreta-
tions of significance and non-significance here; 
the interpretations of what we called conserva-
tive NHST, according to which the magnitude 
only of significant effects can be interpreted 
(Hopkins and Batterham, 2016), fare little better. 

 
Figure 2. Interpretation of 90% confidence intervals in different studies 
using non-clinical MBI, with the p value for each outcome. The figure is 
a slide in a slideshow available via this comment (Hopkins, 2018). 

 
 
Turning now to the problem of error rates in 

MBI, we find some agreement and some disa-
greement with Sainani about the definitions of 
error. We consider that we made a breakthrough 
with our definitions, because they focus on triv-
ial and substantial magnitudes rather than the 
null. As we stated in our Sports Medicine article 
(Hopkins and Batterham, 2016), a valid head-to-
head comparison of NHST and MBI requires 
definitions of Type-I (false-positive) and Type-
II (false-negative) error rates that can be applied 
to both approaches. In the traditional definition 
of a Type-I error, a truly null effect turns out to 
be statistically significant. Sample-size estima-
tion in NHST is all about getting significance for 
substantial effects, so we argued that a Type-I 
error must also occur when any truly trivial ef-
fect is declared significant. It was then a logical 
step to declare a Type-I error in any system of 

inference when a truly trivial effect is declared 
substantial. Sainani appears to have accepted 
this definition. However, she seems unable to ac-
cept our definition of a Type-II error. In our def-
inition, a Type-II error occurs when a true sub-
stantial effect is declared either trivial or sub-
stantial of opposite sign. It's a false-negative er-
ror, in the sense that you have failed to infer the 
effect's true substantial magnitude and sign. This 
definition makes good sense, especially when 
you consider a figure showing error rates on the 
Y axis and true effects on the X axis (Figure 3).  

In her opening statement on definitions of er-
ror, Sainani states that "Hopkins and Batterham 
are confused about what to call cases in which 
there is a true non-trivial effect, but an inference 
is made in the wrong direction (i.e., inferring that 
a beneficial effect is harmful or that a harmful 
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effect is beneficial). In the text, they switch be-
tween calling these Type I and Type II errors." 
Yes, we may have caused confusion with the fol-
lowing statement: "…implementation of a harm-
ful effect represents a more serious error than 
failure to implement a beneficial effect. Alt-
hough these two kinds of error are both false-
negative type II errors, they are analogous to the 
statistical type I and II errors of NHST, so they 
are denoted as clinical type I and type II errors, 
respectively." They are denoted as clinical Type-
I and Type-II errors in the spreadsheet for sam-
ple-size estimation at the Sportscience site, but 
they are correctly identified as Type-II errors in 
our figure defining the errors, in the text earlier 
in the article, and in the figures summarizing er-
ror rates. Sainani goes on to state that "in their 

calculations, they treat them both as Type II er-
rors (Table 1a). But they can't both be Type II 
errors at the same time." We do not understand 
this assertion, or her justification of it involving 
one-tailed tests (but see the technical notes). She 
concludes with "inferring that a beneficial effect 
is harmful is a Type II error," with which we 
agree, "whereas inferring that a harmful effect is 
beneficial is a Type I error," with which we dis-
agree. When a true harmful effect is inferred not 
to be harmful, it is a Type-II error. Sainani also 
notes that a true substantial effect inferred to be 
substantial of opposite sign can be called a Type-
III error, but we see no need for this additional 
complication. That said, we do see the need to 
control the error rate when truly harmful effects 
are inferred to be potentially beneficial. 

 
Figure 3. Inferential error rates with five methods of inference for sample sizes of 10+10, 50+50 and 
144+144. The top panel is reproduced from Hopkins and Batterham (2016); the bottom panel shows the 
Type-I region enlarged (and with Type-II error rates shown as solitary symbols for standardized effects of 
±0.20). The dashed horizontal lines indicate an error rate of 5%. 

 

 
 

Our rebuttal of Sainani's assertions about error 
rates might not satisfy fundamentalist adherents 
of NHST. Figure 3 shows our original figure 
from the Sports Medicine article and an enlarge-
ment of the Type-I rates. We did not misrepre-

sent these rates in the text, but arguably we pre-
sented them in a manner that favored MBI: "For 
null and positive trivial values, the type I rates 
for clinical MBI exceeded those for NHST for a 
sample size of 50+50 (~15–70 % versus ~5–40 
%), while for the largest sample size, the type I 
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rates for clinical MBI (~2–75 %) were interme-
diate between those of conservative NHST 
(~0.5–50 %) and conventional NHST (5–80 %)." 
These error rates are consistent with those pre-
sented by Sainani, but the changes of scale for 
the different true-effect magnitudes in her figure 
gives an unfavorable impression of the MBI 
rates.  

We gave an honest account of the higher 
Type-I error rates with odds-ratio MBI, which 
Sainani did not address. Our justification for 
keeping this version of MBI in the statistical 
toolbox along with clinical MBI seems reasona-
ble. From the Sports Medicine article: "The 
Type-I rates for clinical MBI were substantially 
higher than those for NHST for null and positive 
true values with a sample size of 50+50. The 
probabilistic inferences for the majority of these 
errors were only possibly beneficial, so a clini-
cian would make the decision to use a treatment 
based on the effect, knowing that there was not a 
high probability of benefit. Type-I error rates for 
odds-ratio MBI were the largest of all the infer-
ential methods for null and positive trivial ef-
fects, but for the most part these rates were due 
to outcomes where the chance of benefit was 
rated unlikely or very unlikely, but the risk of 
harm was so much lower that the odds ratio was 
>66. Inspection of the confidence intervals for 
such effects would leave the clinician with little 
expectation of benefit if the effect were imple-
mented, so the high Type-I error rates should not 
be regarded as a failing of this approach." 

In her discussion, Sainani asserts: "Whereas 
standard hypothesis testing has predictable Type 
I error rates, MBI has Type I error rates that vary 
greatly depending on the sample size and choice 
of thresholds for harm/benefit. This is problem-
atic because unless researchers calculate and re-
port the Type I error for every application, this 
will always be hidden to readers." But the "well-
defined" Type-I rate for NHST is only for the 
null; for trivial true effects it also varies widely 
with sample size and choice of magnitude 
thresholds, and this variation is also hidden from 
readers. The fact that the Type-I error rate for 
MBI peaks at the optimum sample size (the min-
imum sample size for practically all outcomes to 
be clear) is no cause for concern, because sam-
ple-size estimation in MBI is based on control-
ling the Type-II rates. She goes on with this par-
ticularly galling assertion: "Furthermore, the de-
pendence on the thresholds for harm/benefit 
makes it easy to game the system. A researcher 

could tweak these values until they get an infer-
ence they like." This is a fatuous charge to level 
against MBI. Any system of inference is open to 
abuse, if researchers are so minded. A researcher 
who assesses the importance of a statistically 
significant or non-significant outcome can 
choose the value of the smallest important effect 
at that stage to suit the outcome obtained with 
the sample. Researchers also game the NHST 
system by providing a justification for sample 
size based on moderate effects. Sainani presum-
ably has the same concerns about full (subjec-
tive) Bayesians gaming not only the smallest im-
portant effect but also the prior to get the most 
pleasing or publishable outcome. 

Sainani's only remaining substantial concern 
about our definition of error rates is not so easily 
dismissed. MBI provides a new category of in-
ferential outcome: unclear, which is synony-
mous with unacceptably uncertain, inadequately 
precise, or perhaps most importantly, indecisive. 
In our definition of Type-I and Type-II errors, 
you can't make an error until you make a deci-
sion about the magnitude. The spreadsheets at 
the Sportscience site (sportsci.org) state: "un-
clear; get more data." Hence we do not include 
unclear as a Type-II error when the true effect is 
substantial, or indeed as a Type-I error when the 
true effect is trivial, a point that Sainani did not 
make. We applied this definition even-handedly 
to what we call conservative NHST, where re-
searchers do not make a decision about an effect 
unless it is statistically significant. A major out-
come of our study of the various kinds of infer-
ence is that the rates of decisive (and therefore 
publishable) effects for small sample sizes with 
MBI are surpassed only by those with conven-
tional NHST, which is 100% decisive but pays 
for it with huge Type-II error rates. The other 
major outcome is the trivial publication bias with 
MBI, whereas the bias is substantial with NHST 
in both its forms. If the error rates with MBI are 
as high as Sainani asserts, they obviously do not 
have implications for publication bias. We have 
no hesitation about keeping indecisive outcomes 
out of the rates of making wrong decisions, but 
if writing off MBI is on your agenda, you will 
continue to assert that unclear outcomes are in-
ferential errors. 

Sainani concludes her critique with the follow-
ing solution to fix what she regards as the MBI 
Type-I error problem: "…a one-sided null hy-
pothesis test for benefit–interpreted alongside 
the corresponding confidence interval–would 
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achieve most of the objectives of clinical MBI 
while properly controlling Type I error." We dis-
agree. First, we do not wish to conduct "tests" of 
any kind; we embrace uncertainty and prefer es-
timation to "testimation", to borrow from Ziliak 
and McCloskey (2008). Secondly, the p value 
from her proposed one-sided test against the 
non-zero null given by the minimum clinically 
important difference is precisely equivalent to 1 
minus the probability of benefit from MBI. If the 
one-sided test is conducted at a conventional 5% 
alpha level, the implication is that Sainani re-
quires >95% chance of benefit to declare a treat-
ment effective–equivalent to our very likely 
threshold. Elsewhere in her article, however, she 
suggests that "…clinical MBI should revert to a 
one-sided null hypothesis test with a significance 
level of 0.005." This test implies a requirement 
for a minimum probability of benefit of 0.995–
equivalent to our most likely or almost certainly 
threshold. We regard both of these thresholds–
and one-sided tests at 2.5% alpha favored in reg-
ulatory settings–as too conservative, particularly 
as clinicians and practitioners we have worked 
with over many years tell us that a 75% chance 
of benefit–or odds of 3:1 in favor of an interven-
tion–is a cognitive tipping point for decision-
making in the absence of substantial risk of 
harm. We also acknowledge that caution is war-
ranted in making definitive inferences or deci-
sions on the basis of a single study, but this is 
perhaps less of a problem, if the single study is a 
large definitive trial with a resulting precise esti-
mate of treatment effect (Glasziou et al., 2010).  

Before we leave the issue of error rates, it is 
important to note that the theoretical basis of 
NHST is now held to be untrustworthy by some 
highly cited establishment statisticians. Con-
sider, for example, the following comments of 
two contributors to the American Statistical As-
sociation's policy statement on p values 
(Wasserstein and Lazar, 2016; see the 
supplement): "we should advise today’s students 
of statistics that they should avoid statistical sig-
nificance testing (Ken Rothman)" and "hypothe-
sis testing as a concept is perhaps the root cause 
of the problem (Roderick Little)." If they are 
right, it follows that the traditional definitions of 
Type-I and Type-II errors, both of which are 
based on the null hypothesis, are themselves un-
realistic and untrustworthy. Our definitions de-
serve more recognition as a possible way for-
ward.  

In her criticisms of the theory of MBI, Sainani 

claims that the three references we cited in our 
Sports Medicine article to support the sound the-
oretical basis of MBI "do not provide such evi-
dence." We will now show that her claim is mis-
leading or incorrect for all three references. 

The first reference is Gurrin et al. (2000), from 
which she quotes correctly: "Although the use of 
a uniform prior probability distribution provides 
a neat introduction to the Bayesian process, there 
are a number of reasons why the uniform prior 
distribution does not provide the foundation on 
which to base a bold new theory of statistical 
analysis!" However, she neglects to point out 
that later in the same article Gurrin et al. make 
this statement: "One of the problems with Bayes-
ian analysis is that it is often a non-trivial prob-
lem to combine the prior information and the 
current data to produce the posterior distribu-
tion… The congruence between conventional 
confidence intervals and Bayesian credible inter-
vals generated using a uniform prior distribution 
does, however, provide a simple way to obtain 
inferences in Bayesian form which can be imple-
mented using standard software based on the re-
sults and output of a conventional statistical 
analysis… Our approach [effectively MBI] is 
straightforward to implement, offers the poten-
tial to describe the results of conventional anal-
yses in a manner that is more easily understood, 
and leads naturally to rational decisions [our 
italics]." Her claim about this reference is there-
fore misleading and by omission, wrong. 

The second reference supporting MBI is 
Shakespeare et al. (2001). Sainani states that this 
article "just provides general information on 
confidence intervals, and does not address any-
thing directly related to MBI." On this point she 
is also wrong. The method presented by Shake-
speare et al. to derive what they refer to as "con-
fidence levels" uses precisely the same methods 
as MBI to derive the probability of benefit be-
yond a threshold for the minimum clinically im-
portant difference. For example, the authors pre-
sent the following re-analysis of a previously 
published study using their method: "The study 
found a survival benefit of 28% favoring imme-
diate nodal dissection (hazard ratio 0·72, 95% CI 
0·49–1·04). There is a… 94% level of confi-
dence [i.e., chance of benefit] that the survival 
benefit is clinically relevant (improvement in 
survival of 3% or more). The information con-
tained in confidence levels is clearly far more 
useful than CIs alone to clinicians in applying 
results to daily practice [our italics]." This 
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method is very obviously MBI in all but name. 
Shakespeare et al. also calculated the risk of 
harm, but it was the risk of harmful side effects, 
not the risk of the opposite of a beneficial out-
come. 

The third reference that she claims does not 
provide evidence supporting MBI is our letter to 
the editor (Batterham and Hopkins, 2015) in re-
sponse to the article by Welsh and Knight 
(2015). By her account, this reference "is a short 
letter in which they point to empirical evidence 
from a simulation that I believe is a preliminary 
version of the simulations reported in Sports Sci-
ence [sic]." But the issue here is the theoretical 
basis of MBI, which indeed we had argued suc-
cinctly in the letter. Hence this claim also is 
wrong. 

Finally, the overarching negative tone of Sain-
ani's critique deserves attention. We counted 
three occasions in the article where she gives any 
credit to our achievement with MBI, but each is 
immediately followed by an assertion that we 
were misguided or mistaken. She is the one who 
is misguided or mistaken. It is deeply disappoint-
ing and discouraging when someone in her posi-
tion of influence fails to notice or acknowledge 
the following novel contributions that we have 
made to the theory and practice of inference: the 
definitions of inferential error that go beyond the 
null (nil) hypothesis and statistical significance; 
sample-size estimation based on controlling 
these errors, especially the risk of declaring a 
harmful effect potentially implementable; the 
higher publishability rates and negligible publi-
cation bias with MBI compared with NHST; 
quantitative ranges for qualitative measures of 
probability; smallest and other magnitude 
thresholds for the full range of effect statistics in 
the sports-medicine and exercise-science disci-
plines; procedures for estimating and assessing 
the magnitude of the standard deviation repre-
senting individual responses with continuous 
outcomes and of the moderators explaining 
them; the need for a distinction between clinical 
and non-clinical inference; the concept of clear 
effects with the two kinds of inference, and the 
associated decision rules based on adequate pre-
cision or acceptable uncertainty; and easily the 
most valuable of all, the notion of accounting for 
the risk of harm–the probability that the true ef-
fect represents impairment rather than enhance-
ment of health or performance–with clinically 
important effects.  

There is still room for debate that could result 

in improvements in MBI. The most obvious de-
batable feature are the rules we have devised for 
deciding when effects are clear in clinical and 
non-clinical settings–in other words, the rules 
for acceptable uncertainty in the two settings. 
These rules in turn depend on the threshold prob-
abilities that define the terms most unlikely, very 
unlikely, unlikely, possible, likely, very likely and 
most likely, because it is only with these or sim-
ilar qualitative terms that researchers, clinicians 
and practitioners can make informed decisions 
as stakeholders. The decision must not be left 
solely with the statisticians. Some will argue that 
these thresholds are as arbitrary as the p value of 
0.05 defining significance. Our rejoinder is that 
our thresholds are for real-world probabilities 
based on experience with clinicians and practi-
tioners. They are also similar to, and a little more 
conservative than, those used by the Intergov-
ernmental Panel on Climate Change 
(Mastrandrea et al., 2010), another group of sci-
entists who are concerned about communicating 
decisions based on plain-language probabilities 
of outcomes. Furthermore, our simulations 
showed that they provide realistic publication 
rates and negligible publication bias for small-
sample research. Anyone wishing to define clear 
more conservatively will inevitably reduce pub-
lication rates and increase publication bias. 

We have demonstrated that the error rates in 
MBI are acceptable overall. However, those 
wishing to use MBI, but who remain concerned 
with error rates, could present an additional sta-
tistic with excellent error control, the second-
generation p-value (SGPV) (Blume et al., 2018). 
Briefly, this statistic is based on an interval null 
hypothesis equivalent to the trivial region in 
MBI. The SGPV is not a probability; rather it is 
the proportion of hypotheses supported by the 
data and model that are trivial. If the SGPV=0, 
then the data support only clinically meaningful 
hypotheses. If the SGPV=1, then the data sup-
port only trivial hypotheses. Values between 0 
and 1 reflect the degree of support for clinically 
meaningful or trivial hypotheses, with a SGPV 
of 0.5 indicating that the data are strictly incon-
clusive.  

If the attack on MBI results in journal editors 
banning the use of MBI in submitted manu-
scripts, and if the editors do not accept MBI as 
reference Bayesian analysis with a dispersed 
uniform prior, what is the alternative? We have 
shown that simple presentation of the confidence 
interval is effectively MBI, and that hypothesis 
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tests against the smallest important effect are far 
too conservative. Researchers may therefore 
have to make the choice between Bayesian anal-
ysis with informative priors and a return to p val-
ues. We have argued in a comment (Hopkins and 
Batterham, 2018) that full Bayesian analyses are 
generally unrealistic and challenging for most 
researchers, which leaves p values as Hobson's 
choice for researchers and a stop-gap choice for 
reviewers and editors. In the same comment, we 
pointed out the following two unfortunate con-
sequences. First, many small-scale studies with 
clear outcomes in MBI will no longer be publish-
able, because the outcomes will not be signifi-
cant. These effects, which do not suffer from 
substantial bias, will no longer contribute to 
meta-analyses, where they would have helped 
push the overall sample size up to something that 
gives definitive outcomes. Meta-analyses based 
on a large number of small studies rather than a 
few large studies also give better estimates of the 
modifying effects of study and subject character-
istics and thereby better generalizability to more 
settings. Secondly, it will be harder for research 
students to get publications, because they will 
need larger sample sizes to get significance, of-
ten impractically large when the subjects are 
competitive athletes. Their careers will therefore 
suffer needlessly. 

The lack of substantial bias with MBI should 
not be used as an excuse for performing under-
powered studies. In the simulations of controlled 
trials where the MBI-optimal sample size was 50 
in each group, a sample size of 10 in each group 
resulted in ~55-65% unclear non-clinical effects 
and ~20-65% unclear clinical effects over the 
range of true trivial effects (Hopkins and 
Batterham, 2016). It is unethical to undertake re-
search when the expectation of a decisive out-
come for trivial effects is determined by a coin 
toss, but when an optimal sample size for trivial 
effects is not possible, should the research 
should still be performed? Yes, if there is a gen-
uine expectation that the effect will have suffi-
cient magnitude to be clear, or if another cohort 
of participants can be recruited eventually to 
make the sample size adequate (although the 
bias with a group-sequential design in MBI has 
yet to be investigated). The smaller sample sizes 
for publishability with MBI reduce the risk of 
unethically underpowered studies compared 
with NHST. 

In conclusion, MBI represents a trustworthy 
mechanism for representing the uncertainty in 

effects with well-defined qualitative categories 
of probability. It beggars belief that any journal 
reviewer or editor could take exception to publi-
cation of an effect as being harmful, trivial, ben-
eficial, substantial increase, or substantial de-
crease prefaced by possibly, likely, very likely, 
or most likely. Such outcomes, along with un-
clear, should be welcomed as a sunny spring fol-
lowing a long dark winter of p-value discontent. 
Instead, MBI has now experienced two one-
sided negative critiques. The current critique 
turns largely on the assertion that possibly bene-
ficial outcomes in clinical MBI and unlikely triv-
ial and possibly trivial outcomes in non-clinical 
MBI have unacceptably high Type-I error rates. 
We have shown that the error rates are generally 
lower than those of NHST, and where any are 
high, they are comparable with those of NHST. 
By communicating the uncertainty in the magni-
tude of effects in plain language, by increasing 
the rates of publishability, and by eliminating the 
potential for publication bias, MBI has provided 
a valuable service to the research community. A 
return to hypothesis testing, p values and statis-
tical significance is unthinkable. MBI should be 
used.  
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Technical notes 

Throughout this article, null means nil or zero, 
rather than Fisher's generic conception of the hy-
pothesis to be nullified (Cohen, 1994). We make 
this point, because some have argued that, in-
stead of MBI or full Bayesian inference, one 
could perform a hypothesis test against the min-
imum important difference, rather than against 
the nil hypothesis, and present a p value for that 
test (e.g., Greenland et al., 2016). Sainani may 
have had this in mind when she wrote: "In addi-
tion, a one-sided null hypothesis test for benefit–
interpreted alongside the corresponding confi-
dence interval–would achieve most of the objec-
tives of clinical MBI while properly controlling 
Type I error." Here, by null she presumably 
means the hypothesis to be nullified: the smallest 
important beneficial effect. 
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Some full Bayesians have previously taken ex-
ception to the non-informative or "flat" prior of 
MBI, by invoking two arguments. First, repre-
senting such a prior mathematically is an intrac-
table problem (Barker and Schofield, 2008). We 
delighted in parodying this argument by calling 
the flat prior an imaginary Bayesian monster 
(Hopkins and Batterham, 2010): the argument is 
easily dismissed simply by making the prior 
minimally informative, which makes the prior 
tractable but makes no substantial difference to 
the posterior. The second argument is that a uni-
form flat or minimally informative prior must 
become non-uniform, if the dependent variable 
is transformed, for example using logarithms or 
any of the transformations in generalized linear 
modeling (e.g., Gurrin et al., 2000). Again, this 
argument is easily dismissed: the flat or mini-
mally informative prior is applied to the trans-
formation of the dependent variable in a model 
that makes least non-uniformity of the effect and 
error compared with any other transformations 
(including non-transformation) and models. 
What happens to the prior with these other trans-
formations and models is irrelevant. 

Interestingly, if we were full Bayesians, we 
might not be expected to concern ourselves with 
error control, as some full Bayesians distinguish 
"beliefs" from estimates of "true" values; for 
them, frequentist notions such as Type-I errors 
do not exist (Ventz and Trippa, 2015). A full 
Bayesian–with the caveat that more than 30 
years ago there were already 46,656 kinds 
(Good, 1982)–might say, for example, that "75% 
of the credible values exceed the minimum clin-
ically important threshold for benefit”, whereas 
the MBI exponent would claim that "the proba-
bility that the true value of the treatment exceeds 
the threshold for benefit is 75%; that is, the treat-
ment is likely beneficial." In MBI, adopting a 
least-informative prior and making decisions 
based on a posterior distribution equivalent to 
the likelihood arguably requires us to give due 
consideration to error control, which we have 
done. The general notion of Bayesian inference 
with a model chosen to yield inferences with 
good frequency properties has been described as 
"Calibrated Bayes" (Little, 2011; Little, 2006). 
Other attempts at reconciling Bayesian and fre-
quentist paradigms include "Constrained Opti-
mal Bayesian" designs (Ventz and Trippa, 
2015). Meanwhile, to make probabilistic state-
ments, Sainani recommends we adopt a full 
Bayesian analysis, in which there is no apparent 

requirement for error control, while lambasting 
MBI for having higher error rates in some sce-
narios. Her position once again is inconsistent. 
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