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Accounting for individual responses is an important issue in studies of the ef-
fects of physical training and other interventions on performance and health. 
Individual responses can be understood as variation in change scores addi-
tional to the variation arising from error of measurement in both parallel-group 
and crossover randomized controlled trials. Estimation of this additional varia-
tion with adequate precision often requires impractically large sample sizes, 
and there are computational challenges with quantifying the extent to which 
each individual's response can be attributed to the intervention. However, sub-
ject characteristics that might explain individual responses should be meas-
ured and included in the usual analyses as modifying covariates, because their 
effects can be estimated often with sufficient precision to allow identification of 
the kind of individuals who are likely to be positive, trivial, or negative respond-
ers. A sample size four times larger than that required to estimate the mean 
effect of the intervention is a potential limitation for assessing such effects, so 
researchers should reduce the requisite sample size by using Bayesian infer-
ence with a dispersed uniform prior (magnitude-based inference), by studying 
only one population subgroup (e.g., females), and by opting for various strate-
gies to reduce error of measurement, including choice of the most reliable 
measure for the dependent variable, inclusion of habituation trials where ap-
propriate, and averaging of repeated trials before and/or after the control and 
experimental treatments. The analyses should include provision for the extra 
variation arising from individual responses to ensure the effects of the inter-
vention and modifiers are estimated correctly. KEYWORDS: controlled trials, 
crossovers, individual differences, interventions, mixed models, mediators, 
moderators, modifiers. 
Reprint pdf · Reprint docx · Slideshow (includes individual differences) 

 
Research Designs ......................................................................................... 40 

Simple designs........................................................................................ 40 
Complex designs .................................................................................... 41 
Sample-size estimation ........................................................................... 41 
Prescription and monitoring of treatments ................................................ 43 

Data Analysis ................................................................................................ 44 
Units for the dependent variable .............................................................. 44 
Individual responses as a standard deviation ........................................... 45 
Individual responses as proportions of responders .................................. 46 
Individual responses as individual probabilities of responders .................. 48 
Statistical models for simple designs ....................................................... 48 
Statistical models for complex designs .................................................... 50 

References .................................................................................................... 50 
 

Update 9 Oct 2019. Link to slideshow on individual 
differences and responses presented at Hong Kong 
Baptist University in October 2019. 

The reference for the consensus statement referred to 
below as "in preparation" is Ross R, Goodpaster BH, 
Koch LG, Sarzynski MA, Kohrt WM, Johannsen 

NM, Skinner JS, Castro A, Irving BA, Noland RC, 
Sparks LM, Spielmann G, Day AG, Pitsch W, Hop-
kins WG, Bouchard C. (2019). Precision exercise 
medicine: understanding exercise response variabil-
ity. British Journal of Sports Medicine 53, 1141-
1153.  
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Assessment of individual responses to inter-
ventions is an important issue, especially as ever 
cheaper genotyping and pervasive monitoring 
provide researchers with subject characteristics 
that could permit personalized targeting of train-
ing and other treatments to improve health or 
performance (Hopkins, 2015; Hopkins, 2018a). 
In 2017 I took part in a symposium on research 
aimed at quantifying individual differences in 
the fitness response to changes in habitual phys-
ical activity. My contributions on design and 
analysis were too extensive to include in more 
than summary form in the consensus document 
arising from the symposium (in preparation). 
Programs I wrote following the symposium in 
the language of the Statistical Analysis System 
(SAS) for the analysis of individual responses 
are available here (Hopkins, 2018a), along with 
my deliberations on sample size for studies of in-
dividual responses (Hopkins, 2018b). In this ar-
ticle I present the full version of my approach to 
design and analysis of such studies. 
Research Designs 
Simple designs 

Individual responses are usually conceptual-
ized in terms of differences between individuals 
in the changes (e.g., in fitness) that occur follow-
ing a treatment (e.g., an increase in habitual 
physical activity). Implicit in such a concept is a 
pre-test and a post-test, separated by the period 
of the treatment, and the individual post-pre 
change scores represent the individual responses 
to the treatment. Changes due to error of meas-
urement occur between two tests in every indi-
vidual even in the absence of any treatment, so 
accounting for such changes requires a group of 
similar individuals who receive a placebo, inac-
tive, or reference treatment. The changes that 
these control individuals experience can then be 
compared with those in the experimental group. 
The resulting design is a controlled trial, with the 
focus not just on the comparison of the mean 
changes in the two groups but also on the spread 
of the changes arising from the experimental 
treatment. This spread can be summarized as a 
standard deviation, as I will show later, but sam-
ple sizes required to estimate its magnitude with 
adequate precision are usually impractically 
large (Hopkins, 2018b).  

On the other hand, subject characteristics that 
could account for individual responses should be 
measured and included in the analysis as moder-
ators or modifiers of the treatment effect, as their 

effects can often be characterized adequately 
with realistic sample sizes (Hopkins, 2018b). 
When effects of such subject characteristics are 
clear and substantial, they allow identification of 
the kind of individuals likely to be positive, triv-
ial, or negative responders to the intervention. 
Such modifiers also provide evidence of individ-
ual responses and responders in the simplest of 
all designs, when there is an experimental group 
and no control group.  

It is possible to eliminate the pre-test in a con-
trolled trial and analyze only post-test scores, 
which will themselves show more differences (a 
larger between-subject standard deviation) in the 
experimental group than those in the control 
group, when there are individual responses to the 
treatment. Such a "post-only" controlled trial 
may have more ecological validity than the usual 
pre-post design, because it involves the least in-
teraction of researchers with their subjects. Un-
fortunately, sample size is always greater–and 
usually much greater–than in a pre-post design.  

Sample size in a post-only controlled trial re-
duces to the smallest of all designs when the 
same subjects experience the experimental and 
control treatments. These studies should be con-
ducted as crossovers, in which the subjects re-
ceive each of the two or more treatments in a bal-
anced order, with a sufficient washout period be-
tween treatments to allow subjects to return to 
their usual state. Crossovers are not a practical 
option for training studies, because the washout 
might not be complete even after many weeks or 
months, but they are the preferred design for es-
timating the mean effect of treatments that have 
only acute effects. Subject characteristics can 
also be included in the analysis to account for in-
dividual responses in a crossover, with one im-
portant exception: the baseline (control or pre-
test) value of the dependent variable, the effect 
of which is confounded by regression to the 
mean. Estimation of the effect of this potential 
modifier requires either a repeat administration 
of the control treatment in the balanced sequence 
of treatments, or a design in which the crossover 
is conducted as a pre-post controlled trial, with 
the same subjects assessed pre and post each 
treatment.  

Certain aspects of design of a controlled trial 
need to be addressed to reduce the risk of bias of 
the mean treatment effect. The Cochrane hand-
book for systematic reviews of interventions 
provides details (Higgins and Green, 2011). 
Briefly, it is important for the study sample to be 
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representative of the population subgroup of in-
terest, ideally by stratified random sampling 
from the subgroup. Such sampling is usually im-
practical in controlled trials, and researchers in-
stead should endeavor to select volunteers either 
reasonably representative for characteristics that 
could modify the effect of the treatment (e.g., 
level of habitual physical activity, body compo-
sition, age, sex) or with restriction to a sub-group 
that is homogeneous for one or more character-
istics. Researchers should then avoid systematic 
differences between the experimental and con-
trol groups in the following: baseline character-
istics (by random assignment, stratified or bal-
anced for potential modifiers, including the base-
line value of the dependent variable and known 
or suspected genotypic modifiers); exposure to 
factors other than the intervention of interest (by 
proscribing and monitoring for changes in be-
haviors that could affect the dependent variable); 
determination of the outcome (by administering 
assessments in the same manner to the treatment 
groups); and withdrawals from the study (by fre-
quent interaction with subjects, by offering in-
ducements for successful completion of any on-
erous training or testing regimes in the experi-
mental group, and by offering the experimental 
program to control subjects, if they complete the 
control treatment). Prescription and monitoring 
of physical activity are also particularly im-
portant issues for reducing bias in training stud-
ies and are dealt with separately below. These 
aspects of design apply equally to reducing bias 
in the estimation of individual responses, but the 
possibility of bias arising from differences in er-
ror of measurement between the groups also 
needs to be addressed, as discussed below. 
Complex designs 

In simple pre-post or post-only designs, as-
sessment of the standard deviation representing 
individual responses is based on the assumption 
that the error of measurement is the same in the 
control and experimental groups. Pre-test errors 
of measurement are not expected to differ be-
tween groups, if the subjects are randomized or 
assigned in a balanced fashion to the groups. 
This expectation may not apply to error of meas-
urement in the post-test, if the active or control 
treatments result in different habituation of per-
formance or other dependent variable. Any dif-
ferences in the change in error not accounted for 
in an appropriate analysis will confound estima-

tion of the standard deviation representing indi-
vidual responses; for example, a smaller error in 
the experimental group or a larger error in the 
control group will reduce the apparent magni-
tude of any individual responses to the experi-
mental treatment. The solution to this problem is 
a repeat of the post-test with a period between 
the tests sufficiently short to assume any change 
in the individual response of each subject is neg-
ligible. The extra measurements allow separate 
estimation of the individual responses and the er-
rors. An additional pre-test is not necessary but 
improves precision of estimation of all effects, 
including the individual responses.  

In designs for assessing adaptation or de-adap-
tion to a treatment, there are two or more post-
tests with sufficient time between tests for the 
possibility of changes to occur in the mean re-
sponse and in individual responses. If the error 
of measurement does not differ between groups 
in the post-tests, the design requires only a single 
test at each post time point. If the error could dif-
fer, a repeat of the test after a short interval is 
required at each post time point, at the cost of 
increased participant burden and drop-outs.  
Sample-size estimation 

I provide an explanation first for the estima-
tion of sample size for assessing the mean effect 
of the treatment. Sample size for assessing the 
magnitude of the standard deviation representing 
individual responses and for assessing subject 
characteristics that could explain the individual 
responses are then expressed as multiples of the 
sample size for assessing the mean. 

Sample size for the mean effect in a simple 
controlled trial or crossover can be estimated 
with freely available software, such as G*power 
(Faul et al., 2007). A spreadsheet is also availa-
ble at Sportscience (Hopkins, 2006a). For pre-
post designs, the user has to input a value for the 
error of measurement expected over the time be-
tween tests, because sample size is proportional 
to the square of the error of measurement. This 
error is often not available as such in publica-
tions, but an approximate value can be derived 
from similar studies of the effect, as shown in the 
Sportscience spreadsheet. There should also be 
provision for inputting the usual between-sub-
ject standard deviation, because inclusion of the 
pre-test value of the dependent variable as a 
modifying covariate reduces the sample size, de-
pending on the relative magnitudes of this stand-
ard deviation and the error of measurement. 

http://www.gpower.hhu.de/en.html
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Individual responses effectively increase the 
error of measurement and therefore the sample 
size, but it may be difficult to estimate the mag-
nitude of the individual responses before the 
study is performed. In any case, to the extent that 
there are substantial individual responses, there 
will probably also be a substantial mean change 
due to the treatment, and sample sizes can be 
smaller for larger true effects. Therefore ignor-
ing the effect of individual responses on the esti-
mate of sample size is justifiable. 

Sample-size estimation also requires input of 
a value for the smallest important effect, the least 
clinically important change in the dependent var-
iable. For fitness and other health-related indi-
ces, the best estimate would be the change asso-
ciated with the smallest substantial change in 
risk of morbidity or mortality, a hazard ratio of 
10/9 (Hopkins et al., 2009a). In the absence of 
such an "anchor-based" smallest change, stand-
ardization provides a "distribution-based" de-
fault: 0.2 of the between-subject standard devia-
tion is widely regarded as the smallest important 
value for assessing differences or changes in 
means of continuous variables. Thresholds for 
moderate, large, very large and extremely large 
changes are given by 0.6, 1.2, 2.0 and 4.0 of the 
between-subject standard deviation and can be 
used to provide a more nuanced assessment of 
the mean change (Hopkins et al., 2009b). 

The final requirement for sample-size estima-
tion is maximum acceptable rates of Type-I 
(false-positive) and Type-II (false-negative) er-
rors, the defaults for which are 5% and 20% in 
null-hypothesis testing. In the approach to infer-
ence based on acceptable uncertainty in magni-
tude of effects (Hopkins and Batterham, 2016), 
analogous Type-1 and Type-2 errors for clini-
cally important outcomes represent respectively 
the rates of declaring harmful effects beneficial 
and beneficial effects non-beneficial. Default 
rates of 0.5% and 25% result in sample sizes that 
are approximately one-third of those of null-hy-
pothesis testing (Hopkins, 2006a). Default error 
rates of 5% for non-clinical effects give the same 
sample size as for clinical effects. Non-clinical 
inference is appropriate for comparisons of ef-
fects in subgroups, evaluation of numeric effect 
modifiers, and evaluation of the standard devia-
tion representing individual responses. 

Together, these requirements may predict a 
sample size for the mean effect of the treatment 
that is within the reach of the average researcher. 

For example, if VO2max is the dependent varia-
ble, with a between-subject standard deviation of 
7 ml.min-1.kg-1, a smallest important change of 
1.4 ml.min-1.kg-1 (0.20 of the between-subject 
SD, although an anchor-based estimate could be 
derived), and measurement error of 1.6 
ml.min-1.kg-1 (4% of the mean of 40 
ml.min-1.kg-1), the sample size is 30 (15 in each 
group) for magnitude-based inference and 82 (41 
in each group) for null-hypothesis testing with 
the default 80% power and two-sided p<0.05. 
Sample sizes can be considerably smaller, if the 
true effect turns out to be larger than the smallest 
important. 

Subject characteristics that could explain indi-
vidual responses as modifiers of the mean treat-
ment effect are either nominal (defining sub-
groups, such as male and female, and any other 
genotypes) or numeric (such as the pre-test value 
of the dependent variable). To evaluate the mean 
effect of the treatment in each subgroup, the 
overall sample size obviously needs to be dou-
bled, if the subgroups are of equal size, but to 
compare the effects in the subgroups with the 
same smallest important difference, the sample 
sizes need to be doubled again, a total of four 
times the usual size. A numeric subject charac-
teristic is usually estimated as a simple linear ef-
fect, and its magnitude should be evaluated as 
the difference in the effect of the treatment for 
subjects who are one standard deviation above 
the mean of the characteristic compared with 
those who are one standard deviation below the 
mean (i.e., the slope of the predictor times two 
standard deviations) (Hopkins et al., 2009b). 
Since this effect represents a comparison of two 
subgroups, the sample size for its evaluation is 
four times the usual sample size. Mediators of 
the treatment effect are analyzed by including 
their change scores as predictors in a linear 
model. As such, they need a sample size the 
same as that of modifiers for adequate character-
ization of their effects, if a different mediating 
effect is assumed in the experimental and control 
groups. 

The uncertainty in the standard deviation rep-
resenting individual responses is inversely pro-
portional to the fourth root of sample size 
(Hopkins, 2018b), whereas the uncertainty in the 
mean effect is inversely proportional to square 
root. Furthermore, the smallest important mag-
nitude for standard deviations is one half that of 
differences in means (Smith and Hopkins, 2011). 
The resulting sample size for adequate precision 



Hopkins: Studies of Individual Responses Page 43 

 Sportscience 22, 39-51, 2018 

of individual responses is impractically large in 
the worst-case scenario of zero net mean effect 
and zero standard deviation for individual re-
sponses: 6.5n2, where n is the required sample 
size for the mean effect (Hopkins, 2018b). The 
sample size drops rapidly as the mean effect and 
standard deviation increase, so adequate preci-
sion for the standard deviation may still be pos-
sible with a sample size aimed at adequate preci-
sion for moderators of individual responses. 

Given the large sample sizes needed for char-
acterizing individual responses and the variables 
explaining them, the researcher should adopt 
every strategy possible to make the worst-case 
sample size realistic. Using magnitude-based in-
ference instead of null-hypothesis significance 
testing to evaluate the true magnitude of effects 
is an obvious first step. To win over referees of 
research grant agencies and journals, describe 
magnitude-based inference as reference Bayes-
ian inference with a dispersed uniform prior 
(Batterham and Hopkins, 2018), point out that 
the threshold probabilities for making decisions 
about magnitude are similar to but more con-
servative than those used by the Intergovern-
mental Panel on Climate Change (Mastrandrea 
et al., 2010), emphasize the clinical relevance of 
magnitude-based inference (null-hypothesis 
testing does not consider risk of harm at all), and 
state that it has lower error rates and higher pub-
lication rates, thereby contributing negligible 
publication bias (Hopkins and Batterham, 2016; 
Hopkins and Batterham, 2018).  

Reducing the number of subject groups is also 
important, if it is likely that the mean effect and 
individual responses differ between the groups; 
for example, I advise against including males 
and females in a study, unless sex effects are the 
main aim and the researchers have access to and 
resources for a two-fold increase in sample size 
to determine the effects in each group separately 
and a four-fold increase to compare them. 
Granted this advice runs counter to the current 
expectations of ethics committees, but it is un-
ethical to perform a study in which you intend to 
get a clear mean effect overall and unclear ef-
fects in males and females. Certainly you should 
avoid samples of athletes consisting of only a 
small proportion of females, whom you treat in 
the analysis effectively as males. Including eth-
nic minorities in their proportion in the popula-
tion is also unethical, in my view, because the 
sample size is bound to be inadequate to charac-
terize their treatment effect. It is obviously better 

to have a separate adequately powered study of 
the minority group. Reducing the number of 
treatment groups is equally important: it is better 
to quantify one treatment well and to let a meta-
analyst deal with the issue of relative efficacy of 
treatment type or dose.  

Another effective strategy to reduce sample 
size is to perform short-term repeats of tests pre 
and post the treatment: if the increase in error of 
measurement between pre- and post-tests is less 
than one-third the error between short-term re-
peats (a possible scenario for most measures of 
fitness), the additional error has a negligible ef-
fect on the uncertainty of effects, and a repeated 
test pre and post is equivalent to doubling the 
sample size. In any case, multiple post-tests are 
obligatory to properly estimate individual re-
sponses, if there is concern that the error of 
measurement differs between the groups in the 
post-test.  

The researcher should also take special care to 
select or modify the test for the dependent varia-
ble to ensure error of measurement is as small as 
possible; for example, depending on the testing 
equipment and the test protocol, peak power or 
peak speed in an incremental test can have half 
the error of VO2max. A measure of physical per-
formance may therefore be not only more relia-
ble but also clinically more valid than VO2max, 
which may be better analyzed as a mediator var-
iable.  

Finally, when a physically or cognitively de-
manding test provides the values of the depend-
ent variable, subjects should perform at least one 
habituation test before the treatment to reduce er-
ror of measurement. A re-habituation test after 
the treatment should also be performed, and it 
can be included in the analysis with the usual 
post-treatment test or tests, if it is apparent that 
the mean of the tests has less error when the re-
familiarization test is included. 
Prescription and monitoring of treatments 

When an intervention can be said to have a 
dose, individual responses could be due simply 
to unintended differences in the dose between 
subjects. It is important to try to eliminate such 
artifactual individual responses by standardizing 
the prescribed dose in some logical manner. For 
example, the dose of an ingested or injected sub-
stance will depend on the concentration of the 
substance in the body compartment where the 
substance or a metabolite of the substance is ac-

https://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf
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tive, so the dose should be administered in pro-
portion to the volume or weight of the appropri-
ate compartment. In practice, researchers usually 
use body mass as a surrogate for the size of the 
compartment, which may not be well defined. If 
dose has not been standardized or for whatever 
reason differs between individuals, then it needs 
to be included in the analysis as a modifying co-
variate in the experimental group or treatment. 
Even when the dose is standardized with body 
mass or what should be a more appropriate com-
partment volume, body mass could still be in-
cluded in the analysis as a moderator in an at-
tempt to further reduce any artifactual effect of 
dose concentration and/or body mass itself. 

Dose in training interventions is particularly 
problematic, because intensity of training needs 
to be standardized initially and as individuals 
adapt. Realistic training programs are progres-
sive in intensity, so it seems reasonable to pre-
scribe bouts either at a percent of some physio-
logical threshold or maximal value or at a per-
ceived intensity. Individuals seldom have 100% 
adherence to training sessions and 100% compli-
ance with session programs, so there are the ad-
ditional problems of how to quantify each indi-
vidual's accumulated training and how to include 
it in the analysis as a moderator. Total duration 
or total load (duration times intensity) expressed 
as a percent of the total prescription are options, 
included as a linear or quadratic numeric predic-
tor or parsed into several subgroups as a nominal 
predictor. 
Data Analysis 

I first resolve some issues surrounding the 
units of fitness or related dependent variables in 
the analysis. Next I present three approaches to 
quantifying individual responses in a simple ran-
domized controlled trial consisting of single pre 
and post measurements in a control and experi-
mental group. I then describe mixed models for 
analyzing data from this and more complex de-
signs. Programs for the analyses written in the 
code of the Statistical Analysis System (SAS) 
are available, along with simulations that were 
used to validate the programs and support some 
of the assertions in the rest of this article 
(Hopkins, 2018a). I have not yet provided pro-
grams for analyzing crossovers, but I can easily 
modify an existing program. Contact me and I 
will do it.  

It is important to emphasize here that a study 
may not have sufficient power or an appropriate 

design to adequately characterize individual re-
sponses, but the analysis must allow for different 
variability in control and experimental groups to 
provide trustworthy estimates of the mean effect 
of the treatment and of its modifiers and media-
tors. Repeated-measures ANOVA is generally 
unsuitable for this purpose, whereas mixed mod-
eling is the method of choice, especially for com-
plex designs with several sources of variability. 
Units for the dependent variable 

When the dependent variable is fitness, perfor-
mance, or any other measure where larger indi-
viduals tend to have larger values, two conten-
tious issues confront the researcher: how should 
body mass or other measure of body size be 
taken into account, and should the effects be an-
alyzed and expressed in percent units or raw 
units? These issues are of minor importance for 
analysis of the mean effect of a treatment, be-
cause similar mean outcomes are usually ob-
tained whether body mass and percent units are 
taken into account before or after the analysis. 
Analysis for individual responses is a different 
matter: larger changes that are due simply to the 
fact that individuals are larger to start with 
should be accounted for somehow. Changes in 
fitness or performance that are due simply to 
changes in body mass also need to be distin-
guished from those due to other physiological 
changes. 

The decision about how to include body size 
in the analysis of fitness can be resolved defini-
tively by considering one of the most clinically 
relevant measures of performance, maximum 
walking or running speed. A reduction in body 
mass arising from the treatment in the absence of 
change in any other measure could improve this 
measure of performance, especially for obese 
subjects. The change in body mass should there-
fore be included in the analytical model as a me-
diator; the effect of the change in body mass is 
provided by this term, while all other effects in 
the model are effectively adjusted to zero change 
in body mass. The effect of a training program 
on walking or running speed could also depend 
on initial body size, so pre-test body mass or 
some other measure of body size should also be 
included in the analysis as a potential modifier. 
When the dependent variable is VO2max, effects 
of training will have the greatest clinical rele-
vance if the units of VO2max are chosen to give 
the highest correlation with walking or running 
speed. Dividing VO2max in liters per min by 

mailto:willthekiwi=AT=gmail.com?subject=I%20need%20a%20SAS%20program%20for%20individual%20response%20in%20a%20crossover
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body mass probably results in a higher correla-
tion, and an even higher correlation is possible 
with an appropriate allometric scaling (e.g., body 
mass raised to some power, such as -0.75). Even 
with such rescaling of VO2max, initial body 
mass should still be included in the model as a 
moderator, but see below for the implications 
with analysis following log transformation. Re-
searchers should also feel free to investigate 
body fat mass as a mediator and lean or muscle 
mass as a moderator. 

 
The decision to express effects in percent or 

raw units can be resolved partially by consider-
ing whether a 2.5 ml.min-1.kg-1 improvement for 
an individual with a VO2max of 25 ml.min-1.kg-1 
is similar to 5 ml.min-1.kg-1 for an individual with 
a VO2max of 50 ml.min-1.kg-1. Both improve-
ments equal 10%, and there would likely be a 
similar ~10% increase in walking or running 
speed for both individuals. On this basis, percent 
units are more appropriate than raw units to as-
sess individual responses. Indeed, to the extent 
that humans and all other animals are creatures 
of proportion for most biological effects, the de-
fault units for such effects should be percents. Of 
course, individuals with high pre-test fitness 
could have a lower percentage improvement 
than individuals with low pre-test fitness, but 
this difference would be due to a ceiling effect or 
some other interesting phenomenon that would 
be biased or lost if the outcome was expressed in 
units other than percents.  

Another consideration in the decision to use 
percent effects is homoscedasticity (uniformity) 
of residuals in the analysis. Magnitudes of ef-
fects derived from the linear models we use in all 
our analyses are based on the assumption that the 
residual error associated with each measurement 
has the same standard deviation across all sub-
jects. (In mixed modeling, different residual er-
rors can be specified for different groups and 
time points, but the assumption then applies to 
such groups and time points.) When non-uni-
formity is obvious in plots of residual vs pre-
dicted values or residual vs predictor values, the 
magnitudes of the effects and of their uncertainty 
are not trustworthy. Where percent effects are 
expected, the errors are also likely to be more 
uniform when expressed in percent units. Per-
cent effects and percent errors are actually factor 
effects and factor errors, and these are converted 
to uniform additive effects and additive errors 

when the analysis is performed on the log-trans-
formed dependent variable. Visual assessment of 
scatterplots of residuals from the analysis of the 
raw and log-transformed dependent variable is 
therefore often useful in deciding which ap-
proach is better. If there is no obvious difference 
in the degree of non-uniformity (which often 
happens when sample sizes are small or the be-
tween-subject standard deviation of the depend-
ent variable is less than ~20%), the decision 
should be guided by the understanding of the na-
ture of the effect and error, which usually means 
taking logs. 

Log transformation has two important impli-
cations for the decision about how to include 
body mass or other measure of body size in the 
analysis. First, if body mass does not change, 
percent effects and errors are the same, whether 
the units of the dependent are absolute or relative 
(e.g., VO2max in L.min-1 or ml.min-1.kg-1), so the 
choice of units is inconsequential. Secondly, re-
gardless of the units of VO2max, inclusion of 
log-transformed pre-test body mass as a moder-
ator and the change in log-transformed body 
mass as a mediator will automatically provide 
the appropriate allometric scaling of these varia-
bles for the given data. The coefficients of these 
predictors in the linear model are the allometric 
indices, which have units of percent per percent: 
percent change in fitness due to the treatment per 
percent difference in body mass for the modera-
tor, and percent change in fitness per percent 
change in body mass for the mediator.  
Individual responses as a standard deviation 

When there are individual responses to an ex-
perimental treatment, the standard deviation of 
change scores in the experimental group is ex-
pected to be greater than that in the control 
group. The net mean effect of the treatment is 
given by the difference in the mean changes in 
the two groups, and the individual responses to 
the treatment can be summarized by a standard 
deviation representing the extent to which the net 
effect of the treatment differs typically between 
individuals. This standard deviation (SDIR) is not 
simply the difference in the standard deviations 
of the change scores; instead, the standard devi-
ations have to be squared to give variances, then 
SDIR is given by the square root of the difference 
in the variances: SDIR = √(SDE

2–SDC
2), where 

SDE and SDC are the standard deviations of the 
change scores in the experimental and control 
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groups. This formula is easily derived from sta-
tistical first principles on the reasonable assump-
tion that the individual responses are random 
numbers independent of the random numbers 
representing error of measurement. It is also as-
sumed that the error of measurement is the same 
in the two groups; if the error could differ, for 
example through habituation in the experimental 
group being different from that in the control, an 
extra post measurement is needed to derive SDIR, 
as explained in the accompanying article on SAS 
programs for individual responses (Hopkins, 
2018a).  

When the design consists only of an experi-
mental group with pre- and post-tests, the stand-
ard deviation of change scores in the control 
group (SDC) in the above formula can be re-
placed by an estimate from a published reliabil-
ity study with similar subjects, measurement 
protocol and time between tests. The estimate (or 
guestimate, if the reliability studies all have 
much shorter time between tests) is given by the 
standard error of measurement (the typical error) 
multiplied by √2. 

The estimate of SDIR provides the simplest ap-
proach to evaluating the magnitude of individual 
responses. Magnitude thresholds for a standard 
deviation are half those for a difference in means 
(Smith and Hopkins, 2011); consideration of the 
proportions of positive, trivial, and negative re-
sponders for different values of SDIR provides 
evidence that these thresholds apply to SDIR 
(Hopkins, 2018b). The uncertainty in the esti-
mate should be taken into account by interpret-
ing the magnitude of the upper and lower confi-
dence limits. For standard deviations and non-
clinical effects, the default level of confidence is 
90%. If the upper and lower confidence limits 
are substantial in a positive and negative sense, 
the SDIR has unacceptable uncertainty and is de-
clared unclear. 

Estimation of the confidence limits for SDIR 
presents a theoretical challenge. The SDIR is es-
timated first as a difference in variances, and it 
is inevitable that the difference is negative in 
some samples, owing to sampling variation in 
the standard deviations of change scores. It may 
also happen that the population standard devia-
tion of change scores in the experimental group 
is less than that in the control group, owing to the 
treatment somehow tending to bring all subjects 
up or down to similar post-test scores–an "ho-
mogenizing" effect that is the opposite of indi-
vidual responses. It follows that estimation of 

SDIR and its confidence limits must allow for 
negative values of SDIR

2, and an assumption 
must be made about the sampling distribution of 
SDIR

2, if its confidence limits are to be derived 
analytically. When a mixed model is used to es-
timate SDIR

2 in the Statistical Analysis System, 
it is estimated as a variance, and the assumption 
is "asymptotic normality"; that is, SDIR

2 is as-
sumed to have a normal distribution, including 
negative values, when the sample size is suffi-
ciently large. This assumption follows from the 
Central Limit Theorem, if we assume that an in-
dividual response is due to the summation of 
trivial contributions of many genetic and envi-
ronmental factors interacting with the treatment. 
Congruence of confidence limits based on this 
assumption and those derived by bootstrapping, 
detailed below, show that sample sizes of ~40 in 
each group are "sufficiently large". Some fac-
tors, such as gender, may produce substantial 
discrete individual responses, in which case the 
distribution of individual responses will be de-
cidedly non-normal, but appropriate inclusion of 
gender in the analysis will restore normality to 
the distribution. The dependent variable may 
also need log-transformation to achieve normal-
ity of SDIR

2 and uniformity of error and effects 
in the analysis.  

Since the square root of a negative number is 
imaginary, negative values of SDIR

2 or its confi-
dence limits result in imaginary values for SDIR. 
I recommend presenting negative variance as a 
negative standard deviation, by changing the 
sign before taking the square root, with the un-
derstanding that the negative values represent 
the extent to which there is more variation in the 
change scores in the control group than in the ex-
perimental group. Negative values for the confi-
dence limits also allow meaningful assessment 
of the uncertainty in the magnitude of SDIR. 
Individual responses as proportions of respond-
ers 

The traditional approach to analysis of indi-
vidual responses is to calculate proportions of 
positive responders directly from the individual 
change scores, by assuming that any positive 
change score or any change score greater than 
some threshold represents a positive response; 
similarly, proportions of negative responders are 
given by the proportions of negative change 
scores or scores more negative than some nega-
tive threshold, and proportions of trivial re-
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sponders are given by change scores falling be-
tween the positive and negative thresholds. The 
threshold chosen in the past has been either the 
standard deviation representing the error of 
measurement or some multiple of it, such as 1.5 
or 2.0 (e.g., Bouchard et al., 2012). The rationale 
for this approach is that sufficiently large posi-
tive or negative changes are unlikely to be due 
simply to error of measurement and can there-
fore be considered "real" changes. Unfortu-
nately, even such real changes are not neces-
sarily substantial individual responses. For ex-
ample, if an individual has changed by 2.5 errors 
of measurement, and the smallest important 
change is equivalent to 3.5 errors of measure-
ment (implying the measure is very reliable or 
precise), then this real change would be better 
characterized as a trivial individual response ra-
ther than a positive individual response. Thus, 
estimation of the proportions of responders from 
individual change scores requires not only the er-
ror of measurement to be taken into account but 
also the smallest important change, and the cal-
culation has to be based on estimates of each in-
dividual's probabilities of being a positive, triv-
ial, and negative responder. I will consider later 
how to calculate such probabilities. Meantime 
there is a more direct approach to calculating 
proportions of responders from the SDIR and the 
net mean change, as follows… 

If the true value of SDIR is zero, then every in-
dividual is either a positive responder, a negative 
responder, or a trivial responder, depending on 
whether the true net mean change is greater than 
the smallest important positive change, less than 
the smallest important negative change, or some-
where in between. If SDIR is greater than zero, 
and the distribution of individual responses is 
normal, it is a straightforward matter to calculate 
the proportions of positive, trivial and negative 
responders from areas under the normal distribu-
tion, as shown in Figure 1.  

Figure 1. Proportions of positive, trivial, and nega-
tive responders (ppositive, ptrivial, and pnegative, respec-
tively) in a controlled trial derived from the sam-
pling distribution defined by the net mean change 
score (experimental–control), the standard devia-
tion representing individual responses (SDIR), and 
smallest important positive and negative changes. 

 
Again, the distribution is likely to be normal, 

but there are two problems: how do we calculate 
the proportions if SDIR is negative, and how do 
we calculate confidence limits for the true pro-
portions? I have taken the following approach to 
solving these problems. If the SDIR is positive, 
we calculate the proportions in the manner 
shown in Figure 1, using the sample net mean 
change and SDIR. If SDIR approaches zero, one of 
the three proportions of responders will ap-
proach 100% (for example trivial responders, if 
the net mean change is trivial), while the other 
two proportions (of positive and negative re-
sponders) will approach 0%. Imagine now that 
the SDIR passes through zero to some small neg-
ative value. To represent the fact that the data 
now display the opposite of individual re-
sponses, I allow the proportions to exceed 100% 
(for trivial responders, in this example) or fall 
below 0% (for positive and negative responders). 
These impossible proportions are calculated by 
allowing SDIR to represent individual responses 
in the control group, by estimating proportions 
of responders in the usual way, then by assigning 
the proportions to the experimental group with 
appropriate changes in value (>100%) or sign 
(<0%). The confidence limits for the true propor-
tions are then estimated by resampling (boot-
strapping) from the original sample at least 3000 
times, and for each of the 3000 samples calculat-
ing the proportions of responders exactly as for 
the original sample. The appropriate percentiles 
of the proportions in the 3000 bootstrapped sam-
ples provide the confidence limits for the true 
proportions (e.g., 5th and 95th percentiles for 
90% confidence limits). The medians (50th per-
centile) of the proportions in the bootstrapped 
samples should also be, on average, the true pro-
portions. 

In simulations to check on the accuracy of this 
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approach (Hopkins, 2018a), I would need to per-
form several thousand trials each with the same 
chosen means and standard deviations for the 
true values of the various parameters, then deter-
mine how often the confidence intervals for the 
proportions of responders include the true pro-
portions. Limitations on computer memory and 
processor speed have thus far limited my simu-
lations to 20 trials and sample sizes of up to 80 
in each group. The coverage of 90% confidence 
intervals is consistent with their being accurate 
in this limited number of trials for a range of re-
alistic values of the mean response and SDIR (in-
cluding both zero) for sample sizes of 40 or more 
in each group.  

In view of the complexity of the analysis, I do 
not recommend bootstrapping to compute accu-
rate confidence limits for the proportions of in-
dividual responders. Instead, the sample esti-
mates of the mean and SDIR along with a value 
for the smallest important mean change can be 
combined in a spreadsheet to estimate propor-
tions of responders in the sample. The sensitivity 
of the proportions to uncertainty in SDIR can then 
be investigated by repeating the calculation with 
the upper and lower confidence limits of SDIR. A 
spreadsheet is available for this purpose via the 
in-brief item on sample size for individual re-
sponses (Hopkins, 2018b). The resulting confi-
dence limits for the proportions are underesti-
mates, because they do not account for uncer-
tainty in the mean change, and because any neg-
ative SDIR is set to zero. 
Individual responses as individual probabilities 
of responders 

It is a relatively simple matter to evaluate the 
probabilities of true values of each change score 
in isolation: the standard error of the change 
score is √2 times the error of measurement, and 
with the assumption that the sampling distribu-
tion of the change score is normal, the probabil-
ities that the real change is substantially positive, 
trivial and substantially negative are given once 
again by areas under a sampling distribution sim-
ilar to Figure 1. Averages of these probabilities 
across all the individuals in the experimental 
group should then give the proportions of posi-
tive, negative, and trivial responders. 

Unfortunately, consideration of the propor-
tions of responders when the true value of SDIR 
is zero or negative shows that this reasoning can-
not be correct: the true proportions of positive, 
trivial and negative responders are 0% or 100%, 

depending on the true value of the net mean 
change, yet the mean values of the sample prob-
abilities will always fall between 0% and 100%. 
The discrepancy arises from the fact that the in-
dividual probabilities arise partly from error of 
measurement, and the remaining contribution 
from the treatment itself has to be assessed by 
taking into account the changes in all the other 
subjects. Individual probabilities of being a re-
sponder will be unbiased only when a method 
can be found to allow an individual's probabili-
ties to be <0% or >100%, when SDIR is negative. 
Confidence limits for each individual's probabil-
ities could then be found by bootstrapping. In the 
absence of such a method, I set the probabilities 
in my simulations to 0% or 100%, whenever 
SDIR is negative in the original and bootstrapped 
samples. As expected, the mean proportions of 
responders in simulations deviate substantially 
from the population values when the uncertainty 
in SDIR allows for sample values of SDIR to be 
substantially negative (i.e., when the lower con-
fidence limit of SDIR is substantial, which occurs 
with small sample sizes and small or negative 
population values of SDIR). With such data, the 
estimates of each individual's probabilities of be-
ing a responder cannot be trusted, so I do not rec-
ommend this approach. 
Statistical models for simple designs 

Separate linear regressions of change scores in 
the control and experimental groups followed by 
a comparison of the effects with the unpaired t 
statistic provides a robust approach to estimating 
the mean treatment effect and the effects of mod-
ifiers and mediators. The magnitude of SDIR and 
its confidence limits can be derived from the 
standard deviations of the change scores. This 
approach has been realized in a spreadsheet, 
which also allows prediction of the mean re-
sponse of individuals with chosen values of the 
baseline and another characteristic (Hopkins, 
2017).  

If the analysis is performed with a mixed 
model, a random effect that specifies extra vari-
ance in the experimental group additional to the 
residual (error) variance is specified by interact-
ing the identity of the subjects with a dummy 
variable having a value of 1 in the experimental 
group and 0 in the control group. The variance 
of this random effect is SDIR

2, and its "solution" 
(the individual values that make up SDIR) is each 
subject's individual response additional to the net 
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mean change. The procedure used for the analy-
sis should allow for negative variance for the 
random effects, which currently excludes the 
open-source "R" package. The Statistical Pack-
age for the Social Sciences (SPSS) does not al-
low negative variance, but unlike R, it provides 
a standard error and a p value for the variances, 
either of which can be used to calculate confi-
dence limits with the assumption of normality. 
(If the observed variance is negative, SPSS 
shows it as zero and issues an error. Rerun the 
analysis with the dummy variable indicating ex-
tra variance in the control group, then change the 
signs on the resulting SDIR and its confidence 
limits.) Programs for running the analysis with 
the procedure for mixed modeling (Proc Mixed) 
in the Statistical Analysis System (SAS) are 
available (Hopkins, 2018a). These programs will 
run in SAS University Edition, the free version 
of SAS Studio. Instructions on installing and us-
ing SAS Studio for mixed modeling are also 
available (Hopkins, 2016).  

The fixed effects in the mixed model for 
change scores are the usual additive terms that 
would be used in an analysis of variance or co-
variance: a nominal variable representing the 
control and experimental groups (which pro-
vides the mean change in each group and the net 
mean change, the difference in the changes), and 
the interaction of this variable with any subject 
characteristics that could be modifiers of the 
treatment effect. Modifiers can be nominal (e.g., 
gender) or numeric (e.g., pre-test fitness). If a 
numeric modifier has a suspected non-linear ef-
fect, it can be modeled as a quadratic or higher-
order polynomial, or it can be recoded into sub-
groups and included as a nominal modifier. An 
exception is the pre-test score of the dependent 
variable, which should be included almost invar-
iably as a simple linear numeric modifier. As 
such, this variable explains some of the variance 
in change scores arising from regression to the 
mean, whereby values of noisy measures that de-
viate from the mean are on average closer to the 
mean on re-test. Inclusion of the pre-test there-
fore reduces the residual error and improves the 
estimates of all effects in the model.  For more 
on regression to the mean in controlled trials, see 
Hopkins (2006b). 

The effects of modifiers are evaluated as the 
difference in the effect between the groups de-
fined by a nominal characteristic and the differ-
ence in the effect of two between-subject stand-
ard deviations of a linear numeric characteristic. 

To the extent that a modifying effect is substan-
tial, SDIR will reduce in magnitude when the 
characteristic is included in the model. For a 
thorough analysis, interactions of subject charac-
teristics should also be considered, and the ran-
dom effects in the model should specify different 
individual responses and different residual errors 
for each subgroup defined by a nominal charac-
teristic. If such analyses seem too daunting, I 
recommend separate analyses for each subgroup, 
which are equivalent to a single analysis with all 
other characteristics interacted with the charac-
teristic and with different SDIR and residual er-
rors for each level of the characteristic. Effects, 
SDIR and residual errors can then be compared 
and averaged with a spreadsheet (Hopkins, 
2006c). 

In simple crossovers or pre-post trials without 
a control group, the modifying effect of the base-
line value of the dependent variable includes a 
negative contribution arising from regression to 
the mean. This effect is automatically adjusted 
away when there is a control group (in controlled 
trials) or an additional control treatment (in 
crossovers). In their absence, the adjustment can 
be performed with data from a reliability study 
with subjects and time between treatments or tri-
als similar to those in the crossover or pre-post 
trial. From first statistical principles, the slope 
between change scores and baseline score is 
given by -(1–r) or -e2/SD2, where r and e are the 
retest correlation coefficient and error of meas-
urement, and SD is the standard deviation of the 
baseline scores. It is better to use the second of 
these two formulae, with e calculated or guesti-
mated from the reliability study. The adjusted ef-
fect of 2SD of baseline is obtained by adding 
2SDe2/SD2 = 2e2/SD to the effect. (I was unable 
to find a citable reference for this simple for-
mula, so I checked it with an Excel simulation. 
The spreadsheet also gives a formula to adjust 
single change scores.) 

Potential mediators can also be included as 
fixed effects, usually as simple linear effects of 
change scores either interacted with the treat-
ment effect (if you suspect mediation is not pre-
sent in the control group or treatment) or without 
interaction (if you expect the same mediating ef-
fect–the same slope–in both groups or treat-
ments). The effect of a mediator can be evaluated 
as that of two standard deviations of change 
scores, but more important is the reduction in the 
mean treatment effect when the mediator is in-
cluded, and the effect of the mean change in the 



Hopkins: Studies of Individual Responses Page 50 

 Sportscience 22, 39-51, 2018 

mediator itself; these add together to give the ef-
fect of the treatment without the mediator in the 
model. Individual responses will also reduce in 
magnitude when an effective mediator is in-
cluded in the model. 
Statistical models for complex designs 

Data from designs in which there is more than 
one experimental group (e.g., two types of train-
ing) or control group (e.g., a placebo interven-
tion and a wait-list control) can be analyzed in 
pairwise fashion using the same model as de-
tailed above, or the group effect in a single 
mixed model can be specified with more than 
two levels. A separate dummy variable inter-
acted with the subject identity is required in the 
single mixed model to estimate individual re-
sponses in each experimental group.  

In designs where there is a short-term repeat 
of the post-test to account for any difference in 
post-test error between the control and experi-
mental groups, analysis of the two change scores 
from the pre-test with a mixed model allows for 
specification and estimation of separate random 
effects for the individual responses and the errors 
in each group. If more than one pre-test is per-
formed to improve precision of estimation of the 
individual responses, it is best to average each 
individual's pre-test scores so that there are still 
only two change scores for each individual. It is 
also possible to analyze original scores rather 
than change scores, but it is more difficult to 
specify the fixed and random effects, especially 
the modifying effect of the pre-test scores and 
the effects of mediators. I strongly advise use of 
change scores in all analyses of individual re-
sponses. 

With two or more post-tests separated by suf-
ficient time for the mean response and individual 
responses to change between post-tests, changes 
in the mean are easily estimated with the appro-
priate fixed effect, but estimation of the individ-
ual responses in each of the post-tests is more 
challenging. The individual responses are not in-
dependent, because a responder in the first post-
test will tend to be a responder in the second 
post-test. This scenario can be taken into account 
by using a dummy variable to specify a random 
effect for individual responses in each post-test, 
and by invoking the so-called "unstructured" 
variance-covariance matrix for these two ran-
dom effects. The resulting variances provide the 
estimates of individual responses in each post-
test, and the covariance provides the consistent 

or sustained individual responses. It is also pos-
sible to specify separate dummy variables for 
one-time-only individual responses in the two 
post-tests and a third dummy to specify the sus-
tained individual responses with the independent 
"variance components" structure; this approach 
provides confidence limits for the one-time-only 
individual responses.  

The error of measurement in the above design 
may change between the two post-tests, but it is 
assumed the same change occurs in the control 
and experimental groups. With the more realistic 
assumption that the change in error differs be-
tween groups, short-term repeats of the post-tests 
are required to account for and estimate the dif-
ferences in errors. A random effect specifies the 
changes between the pre-test and the two main 
post-tests that happen equally in both groups, 
and the same random-effect dummy variables as 
in the previous model are used to specify the in-
dividual responses due to the treatment. Separate 
measurement errors are specified as four sepa-
rate residuals for the groups and the two main 
time points. See this article for details of the re-
alization of this model and the other models in 
SAS (Hopkins, 2018a).  

I am skeptical about the practical relevance of 
models based on individual differences in linear 
time-dependent increases in fitness with re-
peated testing during a period of training, as de-
scribed in the consensus document from the 
symposium on individual fitness responses (in 
preparation). Adaptation to a constant dose of 
training is non-linear: there is a rapid increase in 
fitness reaching a plateau after 4-8 weeks. With 
the usual progressive increases in dose, fitness 
will increase, but there is no way one can ever 
assume a linear increase in the fitness response. 
The analyst is stuck with assessing fitness at sev-
eral time points and assessing changes between 
points in a pairwise fashion–hence the models 
above with two post-tests. 
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