
Hopkins: Sampling uncertainty Page 1 

 Sportscience 26, 1-9, 2022 

SPORTSCIENCE · sportsci.org  
Original Research / Research Resources  
Replacing Statistical Significance and Non-Significance with Better 
Approaches to Sampling Uncertainty 
Will G Hopkins 

Frontiers in Physiology, 13:962132, doi: 10.3389/fphys.2022.962132 
Institute for Health and Sport, Victoria University, Melbourne, Australia. Email. 
This article (excluding the comment and slideshow) has been co-published in Frontiers in Physiology at this link. 

 

A sample provides only an approximate estimate of the magnitude of an effect, 
owing to sampling uncertainty. The following methods address the issue of 
sampling uncertainty when researchers make a claim about effect magnitude: 
informal assessment of the range of magnitudes represented by the confi-
dence interval; testing of hypotheses of substantial (meaningful) and non-sub-
stantial magnitudes; assessment of the probabilities of substantial and trivial 
(inconsequential) magnitudes with Bayesian methods based on non-informa-
tive or informative priors; and testing of the nil or zero hypothesis. Assessment 
of the confidence interval, testing of substantial and non-substantial hypothe-
ses, and assessment of Bayesian probabilities with a non-informative prior are 
subject to differing interpretations but are all effectively equivalent and can 
reasonably define and provide necessary and sufficient evidence for substan-
tial and trivial effects. Informative priors in Bayesian assessments are prob-
lematic, because they are hard to quantify and can bias the outcome. Rejection 
of the nil hypothesis (presented as statistical significance), and failure to reject 
the nil hypothesis (presented as statistical non-significance), provide neither 
necessary nor sufficient evidence for substantial and trivial effects. To properly 
account for sampling uncertainty in effect magnitudes, researchers should 
therefore replace rather than supplement the nil-hypothesis test with one or 
more of the other three equivalent methods. Surprisal values, second-genera-
tion p values, and hypothesis comparisons of evidential statistics are three 
other recent approaches to sampling uncertainty that are not recommended. 
Important issues beyond sampling uncertainty include representativeness of 
sampling, accuracy of the statistical model, individual differences, rewards of 
benefit, and costs of harm.  
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See the accompanying In-brief item for the back 
story and several relevant points that could have 
been included in this article. The slideshow, 
which was added in December 2022, has more 
detail on sampling distributions, the standard er-
ror, assessing magnitudes, and using magnitude-
based inference. 
 

Introduction 
Read the abstract of any sample-based study 

and you will see that authors almost invariably 
use the data in their sample to make a claim 
about whether or not there is an effect. This 
dichotomization of outcomes appears to be a 
consequence of the widespread and often 
mandated use of statistical significance and non-
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significance, with which authors interpret 
significant as real, meaningful, worthwhile, 
important, useful, beneficial, harmful, or 
otherwise substantial, whereas they interpret 
non-significant as meaningless, worthless, 
useless, unimportant, inconsequential, or 
otherwise trivial. Non-significant is even 
sometimes presented as no effect whatsoever, 
the nil or zero in the null-hypothesis significance 
test (NHST), in which the null hypothesis is that 
there is no effect. (I will therefore refer to NHST 
as the nil-hypothesis significance test, to 
distinguish it from tests of other magnitudes.) 
Whether they understand it or not, authors are 
using statistical significance and non-
significance as a method to account for 
uncertainty arising from sampling variation: 
another sample would give a different value of 
the effect (and a different p value for NHST), 
and it is only when samples are very large that 
the sample values would always be practically 
the same and therefore accurately represent the 
population or true value, provided of course that 
the sample properly represents the population. 

Are authors justified in claiming that signifi-
cant means the effect is real and non-significant 
means no effect? Such claims are consistent with 
the plain-English meanings of significant and 
non-significant. The design of NHST also leads 
authors to make such claims, because it is based 
on using a sample size that would give a reason-
ably high chance (usually 80%, the power of the 
study) of obtaining statistical significance (usu-
ally p <0.05), when the true effect is the smallest 
important (sometimes referred to as the minimal 
clinically important difference). Unfortunately, 
statistical significance and non-significance do 
not directly address the evidence that an effect is 
substantial or trivial. Other approaches do, and 
as I will explain, they show that significance and 
non-significance are not fit for purpose. 

The fundamental and irreparable problem with 
statistical significance and non-significance is 
the nil-hypothesis test: if you are interested in 
whether an effect is substantial or trivial, testing 
whether the effect could be nil or zero self-
evidently misses the point. Instead, if you 
believe that hypothesis testing is the basis of the 
scientific method, you should test the hypotheses 
that the effect is substantial and trivial, then 
make decisions about magnitude based on 
rejection of the appropriate hypotheses. 
Alternatively, if you dislike the dichotomization 
of hypothesis testing and believe instead that 

estimation is the basis of empirical science, you 
should estimate the probabilities that the effect 
has substantial and trivial magnitudes, then 
make decisions based on threshold probabilities. 
You can even avoid making overt decisions and 
simply present qualitative and quantitative 
statistics representing either the range of 
possible effect magnitudes or level of evidence 
for or against effect magnitudes. In this article I 
will show that these alternative approaches are 
effectively equivalent, when they are understood 
in terms of the confidence interval or the 
sampling distribution from which it is derived. 
In the Discussion section, I also critique three 
more recent proposals for dealing with sampling 
uncertainty: surprisal values, second-generation 
p values, and the hypothesis comparisons of 
evidential statistics. The article is an updated 
version of a paper on sampling uncertainty that I 
circulated to Frontiers and other journal editors 
in the disciplines of exercise and sport science 
(Hopkins, 2021a). 
The Confidence or Compatibility Interval 

The best measure of sampling uncertainty is 
probably the confidence interval. The interval is 
usually interpreted in terms of precision of 
estimation, with larger samples producing 
narrower intervals that represent more precise 
estimates. This interpretation is the basis of a 
qualitative approach to sampling uncertainty 
promoted by Ken Rothman in his 
epidemiological texts (e.g., Rothman, 2012) and 
by psychologist Geoff Cumming in his "new 
statistics" (e.g., Cumming, 2014). These authors 
interpret the interval as a range of values of the 
effect, but they avoid describing the range as 
possible true values of the effect–an 
interpretation that requires a Bayesian analysis, 
as described below. The authors also offer little 
guidance on what level of confidence is 
appropriate, but Rothman's examples feature 
90% intervals three times more frequently than 
95% intervals. Figure 1 shows the six different 
conclusions about the magnitude of an effect, 
depending on the disposition of the confidence 
interval in relation to substantial and trivial 
magnitudes defined by the smallest important 
values. The resulting conclusions are properly 
phrased in terms of compatibility or 
incompatibility of those values with the data and 
model; for this reason, compatibility interval is 
perhaps a better term than confidence interval 
(Rafi & Greenland, 2020). 

Rothman and Cumming emphasize that their 
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method is a replacement for statistical signifi-
cance. For example, Rothman (2012) states "Es-
timation using confidence intervals allows the 
investigator to quantify separately the strength of 
a relation and the precision of an estimate and to 

reach a more reasonable interpretation… In most 
instances, there is no need for any tests of statis-
tical significance to be calculated, reported, or 
relied on, and we are much better off without 
them." 

 
Figure 1. Conclusions about effects determined by coverage of the confidence or compatibility interval (CI), by tests 
based on rejection of one-sided interval hypotheses, and by Bayesian probabilities, for six qualitatively different dis-
positions of 90% CI (bars) relative to substantial and trivial magnitudes. +ive, substantial positive; –ive, substantial 
negative.  

 
 

Tests of Substantial and Non-substantial 
Hypotheses 

The idea of testing whether an effect is sub-
stantial or trivial rather than nil has been pro-
moted for many years in the guise of (non-)infe-
riority, (non-)superiority, equivalence, and one-
sided interval-hypothesis testing (e.g., Allen & 
Seaman, 2007), but the approach is still rarely 
used. The compatibility interpretation of the 
confidence interval provides a straightforward 
way to understand how the tests work (Figure 1). 
If the interval falls entirely in, say, substantial 
positive values, non-positive values are not com-
patible with the data and statistical model, so the 
hypothesis that the effect is non-positive can be 
rejected. Conclusion: the effect is substantial 
positive (or strictly, not non-positive). With a 
90% compatibility interval, the p value for the 
test (pN+) would be <0.05, the exact p value be-
ing provided by the sampling distribution from 
which the compatibility interval is derived. If the 
interval falls entirely in trivial values, two one-
sided hypotheses are rejected: the hypothesis 
that the effect is substantial positive and the hy-
pothesis that the effect is substantial negative. 
Conclusion: the effect is trivial (or strictly, not 
substantial positive and negative). With a 90% 
compatibility interval, the p values for each test 
(p+ and p–) are both <0.05, and the exact p values 
are provided by the sampling distribution. Com-

patibility intervals that include trivial magni-
tudes and substantial magnitudes of one sign im-
ply rejection of the hypothesis of magnitudes of 
the other sign, and compatibility intervals that 
include substantial magnitudes of both signs im-
ply rejection of no hypotheses. The correspond-
ence between qualitative interpretations of com-
patibility intervals and the outcome of tests of 
substantial and non-substantial hypotheses 
should now be obvious.  

Rejecting an hypothesis about a magnitude is 
decisive about the magnitude in a necessary 
sense. If the true effect is substantial, you must 
be able to reject the hypothesis that the effect is 
non-substantial at whatever chosen alpha level 
(p-value threshold) of the hypothesis test, alt-
hough you might need a large sample size. Sim-
ilarly, if the true effect is trivial, you must be able 
to reject the two substantial hypotheses. Reject-
ing hypotheses about magnitude is also decisive 
in a sufficient sense. Rejecting a substantial pos-
itive or negative hypothesis is sufficient to de-
cide that the magnitude is not substantially posi-
tive or negative, with an error rate defined by the 
alpha of the test. Similarly, rejecting a non-sub-
stantial-positive or non-substantial-negative hy-
pothesis is sufficient to decide that the true effect 
is substantial positive or substantial negative, 
and rejecting both substantial hypotheses is suf-
ficient to decide that the true effect is trivial, with 
error rates defined by the alphas. Hypothesis 
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testing is not guaranteed to be decisive for a 
given effect in a given study: rejecting the appro-
priate hypothesis (and thereby reaching the right 
conclusion) when the true effect is substantial or 
trivial will require a sample size that gives a 
compatibility interval narrow enough to exclude 
the hypothesized magnitude most of the time. I 
have addressed the issues of sample-size estima-
tion with these tests elsewhere (Hopkins, 2020).  

A problem with hypothesis testing, as with the 
compatibility interval, is choosing the appropri-
ate alpha or compatibility level for a given kind 
of effect in a given setting. The Bayesian ap-
proach with probabilities of substantial and triv-
ial magnitudes offers a solution to this problem. 
Probabilities of Substantial and Trivial 
Magnitudes 

For some researchers, dichotomization is an 
undesirable aspect of hypothesis testing: you 
conclude that the effect is definitely not some-
thing. Admittedly, the dichotomizing is softened 
somewhat by the up-front error rate represented 
by the p-value threshold. However, the p value 
represents evidence against a magnitude, and the 
test therefore does not lend itself easily to a more 
accessible expression of level of evidence for a 
magnitude. Bayesian analysis provides such ev-
idence in the form of probabilities that the effect 
is substantial in a positive sense, substantial in a 
negative sense, and trivial (substantial in neither 
sense). 

In a Bayesian analysis, the uncertainty in the 
true effect is defined by a posterior probability 
distribution of the true effect, which is derived 
by combining the sample data with prior belief 
or information about the uncertainty in the ef-
fect. A full Bayesian implementation is chal-
lenging, since a prior probability distribution has 
to be found and justified for every parameter in 
the statistical model used to derive the effect. All 
these parameter priors can be imagined coalesc-
ing into a single prior uncertainty in the true ef-
fect, which is then combined with the data. 
Greenland's (2006) simplified Bayesian method 
uses this approach, which is at once more intui-
tive than a full Bayesian analysis and easily im-
plemented (e.g., with a spreadsheet: Hopkins, 
2019). The probabilities of substantial and trivial 
magnitudes are derived as the areas of the poste-
rior distribution falling in substantial and trivial 
values. 

Informative priors based on belief are difficult 
to justify and quantify, and the more informative 

they are, the more they are likely to bias the ef-
fect. They therefore offer the researcher an op-
portunity to bias the effect towards a desired or 
expected magnitude, by using a prior centered on 
that magnitude. Researchers can avoid these 
problems by opting for a prior sufficiently dif-
fuse (weakly informative) that the posterior is 
practically identical to the original sampling dis-
tribution, which can then be interpreted directly 
as the probability distribution of the true effect. 
This approach to sampling uncertainty has been 
promoted by various authors (Burton, 1994; 
Shakespeare et al., 2001; Albers et al., 2018), in-
cluding the progenitors of magnitude-based in-
ference (MBI: Batterham & Hopkins, 2006; 
Hopkins & Batterham, 2016), also known as 
magnitude-based decisions (MBD; Hopkins, 
2020). Formally, the approach is Bayesian as-
sessment with a weakly informative prior taken 
to the limit of non-informative.  

Some authors have claimed that MBI is not 
Bayesian, because a non-informative prior is not 
"proper" (it cannot be included in Bayesian com-
putations, because it has zero likelihood for all 
values of the effect), and because such a prior 
implies a belief that unrealistically large values 
of the effect have the same likelihood (albeit 
zero) as realistic small values (Barker & 
Schofield, 2008; Welsh & Knight, 2015; Sainani 
et al., 2019). These criticisms have been ad-
dressed (Hopkins & Batterham, 2008; Batterham 
& Hopkins, 2015; Hopkins & Batterham, 2016; 
Batterham & Hopkins, 2019), most recently with 
the above argument that a realistic weakly in-
formative normally distributed prior makes no 
practical difference to the posterior probabilities 
of the true effect for any reasonable sample size 
(Hopkins, 2019). For those with any lingering 
doubt, I would point out that even a full Bayesian 
analysis produces a posterior that is practically 
identical to the original sampling distribution, 
when the sample size is large enough to over-
whelm the information in the prior. The sam-
pling distribution can then be interpreted as the 
probability distribution of the true effect, yet the 
analysis and interpretation are still Bayesian. 
Equally, instead of making the sample size large, 
the prior can be made so weakly informative that 
it is overwhelmed by the data. The sampling dis-
tribution can then be interpreted as the probabil-
ity distribution of the true effect, yet the analysis 
and interpretation are still Bayesian. There is no 
requirement with this argument for the weakly 
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informative prior to be realistic, but as I have al-
ready stated, even realistic weakly informative 
priors make no practical difference with the 
small sample sizes typically encountered in ex-
ercise and sport science. It is therefore illogical 
for detractors to continue to state that MBI is not 
Bayesian.  

With really small sample sizes, a weakly in-
formative prior "shrinks" the posterior compati-
bility interval substantially and shifts it towards 
the middle of the prior. Researchers are welcome 
to apply such a prior, although in my view it is 
better to present the effect unbiased, with all its 
wide uncertainty, as a reminder to the researcher 
and the reader that the sample size in the study 
was woefully inadequate. Researchers may also 
wish to use reasonably informative priors to 
shrink the posterior even with the usual sample 
sizes. The resulting bias towards the prior will 
make the compatibility limits look more realis-
tic, if that is a problem, but I would caution that 
the cost is downward bias and a resulting reduc-
tion of the chances of discovering a substantial 
effect. 

It has also been claimed that MBI has a high 
Type-I or false-positive error rate (Welsh & 
Knight, 2015; Sainani, 2018). Those who make 
this claim interpret a possibly or likely substan-
tial effect as a decisively substantial effect, then 
show that a high proportion of such effects are 
not statistically significant when sample sizes 
are small. There are two flaws with this claim. 
First, it is only when an effect is very likely sub-
stantial that the effect is considered decisively 
substantial (the compatibility interval falls en-
tirely in substantial values). Secondly, as argued 
in this article, statistical significance is not a cri-
terion for substantial. When errors are defined in 
terms of declaring a true trivial effect to be sub-
stantial and declaring a true substantial effect to 
be trivial, the error rates of the various forms of 
MBI were shown by simulation to be acceptable 
and generally superior to those of NHST for var-
ious effect magnitudes and sample sizes in con-
trolled trials (Hopkins & Batterham, 2016). In-
terestingly, the same simulations showed that 
publication rates (of "clear" effects in MBI and 
statistically significant effects in NHST) and re-
sulting publication bias of the various forms of 
MBI were also superior to those of NHST. All 
these findings applied not only to the usual sam-
ple size required for 5% significance and 80% 
power with NHST, but also to much smaller 
sample sizes: 10+10 in a controlled trial, when 

50+50 were required for adequate precision with 
MBI and ~150+150 were required for NHST. 
Naturally, small sample sizes often produce un-
clear outcomes, but these are not false positives 
or false negatives; rather, the conclusion is that 
more data are needed to resolve the uncertainty 
about the magnitude. 

The most recent criticism of MBI is that it is 
misused by authors interpreting possibly and 
likely substantial as decisively substantial (Lohse 
et al., 2020). Close examination of the publica-
tions showed that most authors were not misus-
ing MBI in this manner (Aisbett, 2020). Such 
misuse, when it occurs, should be easy to iden-
tify and correct during the process of peer re-
view. 

Magnitude-based inference goes further than 
its Bayesian predecessors by providing qualita-
tive interpretations of the probabilities of sub-
stantial and trivial magnitudes and by suggesting 
different decision thresholds for the probabilities 
in non-clinical and clinical or practical settings 
(which can also be done in a full Bayesian anal-
ysis). Briefly, magnitudes in a non-clinical set-
ting are considered decisive when they are very 
likely (probability >0.95 or chances >95%), cor-
responding to rejection of one or other non-sub-
stantial hypotheses (pN+ <0.05 or pN– <0.05) or to 
rejection of both substantial hypotheses (such 
that p+ + p– <0.05); equivalently, the 90% com-
patibility interval falls entirely in substantial val-
ues or the 95% compatibility interval falls en-
tirely in trivial values. See Figure 1. I established 
the mathematical equivalence of MBI and hy-
pothesis testing by considering areas under nor-
mal probability distributions and error rates 
(Hopkins, 2020). 

In a clinical or practical setting, an effect that 
is possibly beneficial (probability >0.25 or 
>25%) is considered potentially implementable, 
provided harm is most unlikely (probability 
<0.005 or <0.5%). Equivalently, the 50% com-
patibility interval overlaps beneficial values, or 
the beneficial hypothesis is not rejected (pB 

>0.25), while the 99% compatibility interval 
overlaps no harmful values, or the harmful hy-
pothesis is rejected (pH <0.005). The different 
probability thresholds or compatibility intervals 
for benefit and harm in clinical MBI accord more 
importance to avoiding harm than to missing out 
on benefit. A less conservative version of clini-
cal MBI, in which an effect is considered poten-
tially implementable when the chance of benefit 
far outweighs the risk of harm (odds ratio >66), 
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does not have equivalent hypothesis tests.  
If the probabilities of substantial and trivial 

magnitudes are such that no hypotheses are re-
jected, the outcome in MBI is described as un-
clear or indecisive, meaning that precision is in-
adequate and a larger sample size, better design, 
and/or better analysis are required. Once a sub-
stantial hypothesis is rejected, the qualitative 
probabilities of the other substantial and/or of 
trivial magnitudes are reported, as shown in Fig-
ure 1. The scale for these qualitative probabili-
ties (25-75%, possibly; 75-95%, likely; 95-
99.5%, very likely; >99.5%, most likely) 
(Hopkins et al., 2009) is similar to but a little 
more conservative than that of the Intergovern-
mental Panel on Climate Change (Mastrandrea 
et al., 2010), who use their scale to communicate 
plain-language uncertainty in climate predic-
tions to the public. 

I have presented Bayesian analysis as an alter-
native to hypothesis testing, but as a reviewer 
pointed out, the Bayesian posterior credibility 
interval obtained with an informative prior can 
be used to test hypotheses (e.g., Gelman & Sha-
lizi, 2013). In other words, the compatibility in-
tervals shown in Figure 1 work equally well for 
testing hypotheses or for qualitative interpreta-
tion of magnitude when they are Bayesian pos-
teriors. Researchers can therefore combine in-
formative priors with data in a Bayesian analysis 
while maintaining the Popperian philosophy of 
falsification. The only problem is trustworthy 
quantification of informative priors. 
The Nil-Hypothesis Significance Test 

An effect is statistically significant at the 5% 
level when the nil or zero hypothesis is rejected 
(p<0.05); equivalently, the nil value of the effect 
is not compatible with the data and statistical 
model, so a 95% compatibility interval does not 
include the nil. The effect is statistically non-
significant when the nil hypothesis is not 
rejected, so the 95% compatibility interval 
includes the nil.  

If you allow that coverage of 90% compatibil-
ity intervals or the corresponding interval-hy-
pothesis tests provide conclusive evidence about 
magnitudes, Figure 2 shows the scenarios where 
conclusions of substantial for significance and 
trivial for non-significance are appropriate: the 
90% interval has to fall entirely in substantial or 
trivial values, respectively. Figure 2 also shows 
scenarios where these conclusions are not appro-
priate. These scenarios should convince you that 
significance is not sufficient for the effect to be 

decisively substantial (some significant effects 
could be trivial or even decisively trivial), while 
non-significance is not sufficient for the effect to 
be decisively trivial (some non-significant ef-
fects could be substantial or even decisively sub-
stantial). Two of the examples show that signifi-
cance and non-significance are not even neces-
sary respectively for decisively substantial and 
decisively trivial: decisively substantial can be 
not significant (the last example in the figure), 
and decisively trivial can be not non-significant, 
i.e., significant (the fourth example). In short, 
significant and non-significant are sometimes 
not the same as decisively substantial and deci-
sively trivial. 

 
Figure 2. Compatibility intervals (thin bars, 95%; thick 
bars, 90%) illustrating significant effects where it would 
be appropriate (=) and inappropriate (≠) to conclude the 
effect is substantial, and non-significant effects where it 
would be appropriate and inappropriate to conclude the 
effect is trivial. The arrowhead indicates both compati-
bility intervals extending much further to the left. 

 

The prevalence of appropriate conclusions 
about magnitude based on significance and non-
significance in a given discipline will depend on 
the magnitude and uncertainty of effects relative 
to smallest important values. In a sample of 
studies related to athletic injury or performance 
at a recent sport-science conference, substantial 
was an appropriate conclusion for only 52% of 
significant effects, while trivial was appropriate 
for none of the non-significant effects, on the 
basis of coverage of 90% intervals or non-
clinical MBI (Hopkins, 2021b). The proportion 
of significant effects that were potentially 
beneficial or harmful on the basis of clinical 
MBI was higher (65%), especially with odds-
ratio MBI (87%), but again, none of the non-
significant effects were decisively trivial with 
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clinical MBI. I know of no other study where the 
misuse of significance and non-significance has 
been quantified in this fashion, but from my own 
experience, the misuse of significance and non-
significance in peer-reviewed journals is no 
better than at this conference. As such, NHST 
should be "retired" (Amrhein et al., 2019).  
Discussion 

A figure showing the disposition of a 90% 
compatibility interval relative to smallest im-
portant and other substantial magnitudes is the 
simplest tool for authors and readers to avoid 
making unrealistic conclusions about the magni-
tude of an effect and its uncertainty. The conclu-
sion can be presented as the range in magnitudes 
represented by the lower and upper compatibility 
limits, and substantial can be further modified as 
small, moderate, etc. For example, an interval 
that begins in trivial values and ends in large pos-
itive values could be presented as trivial to large 
+ive (or trivial to large ↑, for factor effects), and 
the interval obligates the conclusion that the ef-
fect could be trivial to large positive and could 
not be substantially negative. The meanings of 
could be and could not be are defined by the 
level of the compatibility interval and can be ex-
pressed either in terms of rejection or failure to 
reject hypotheses or in terms of probabilities of 
the magnitudes. Indeed, some readers may prefer 
to see a more quantitative assessment of sam-
pling uncertainty, so it seems reasonable for au-
thors to also present hypothesis tests and proba-
bilities of magnitudes. I have provided a relevant 
template for authors to include or cite in the 
methods section of their manuscripts, along with 
advice on the smallest and other important mag-
nitude thresholds and on reporting effects in text, 
tables and figures (Hopkins, 2020).  

Use of probabilities is perhaps the best 
approach, because it represents a desirable move 
away from dichotomization and towards level of 
evidence, which could be described as modest or 
some evidence for a possible magnitude, good 
evidence for a likely magnitude, very good 
evidence for a very likely magnitude, and strong 
evidence for a most likely magnitude. Use of 
probabilities also allows better assessment of 
effects with clinical or practical relevance: a 
symmetric 90% interval does not capture the 
notion that strong evidence is needed against 
harm, while only modest evidence is needed for 
benefit. Furthermore, "you need only a modest 
probability of benefit, but you need a really low 
probability of harm" seems a more reasonable 

and accessible basis for proceeding to evaluate 
implementability than "you need failure to reject 
the hypothesis of benefit at some liberal p-value 
threshold and rejection of the harmful hypothesis 
at some conservative p-value threshold."  

I doubt whether the problems with NHST will 
be solved by editors allowing authors to provide 
the p value for NHST while prohibiting use of 
the terms significant and non-significant: most 
researchers will probably still think that p <0.05 
and p >0.05 somehow provide additional or even 
criterion evidence for the presence and absence 
of effects. If p values are to be shown, they 
should be the Bayesian probabilities of substan-
tial and trivial magnitudes, which as themselves 
or their complement (1 minus p) double as p val-
ues for hypothesis tests. The demise of NHST 
would also mean no more post-hoc tests condi-
tioned on the statistical significance of predictors 
with more than two levels (e.g., group or time 
main effects or interactions). The magnitude and 
uncertainty of specific contrasts, pre-planned or 
otherwise, are what matter, regardless of the 
magnitude and uncertainty of any statistic sum-
marizing the effect of all the levels (F ratios, var-
iance explained, and so on). Any concern about 
an increase in error rate with multiple effects can 
be addressed by using higher levels of confi-
dence for the compatibility intervals, smaller p-
value thresholds for hypothesis tests, or more ex-
treme probability thresholds for decisions. 

In an effort to wean researchers off the dichot-
omization inherent in any hypothesis test, 
Greenland (2019) has promoted transformation 
of the p value of the test into an S or "surprisal" 
value, given by -log2(p), which is the number of 
consecutive head tosses of a fair coin that would 
have probability p. Researchers would present 
an S value rather than a p value, then assess a 
large S value as strong evidence against the hy-
pothesized magnitude. I do not recommend S 
values for assessing sampling uncertainty, be-
cause they represent evidence against hypothe-
ses, while the probabilities for magnitudes seem 
to me to be more accessible measures of evi-
dence, especially when expressed as the plain-
language terms possibly, (un)likely, very 
(un)likely, and most (un)likely. 

A reviewer who rejected the manuscript on 
first review opined that "the second-generation 
P-value (SGPV) approach [is] more quantitative 
than the way offered by the author." In one of the 
references cited by this reviewer to support this 
opinion (Stewart & Blume, 2019), there is the 
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following succinct statement: "SGPVs measure 
the overlap between an uncertainty interval for 
the parameter of interest and an interval null hy-
pothesis that represents the set of null and prac-
tically null hypotheses." Lakens and Delacre 
(2020) have shown that the SGPV gives practi-
cally identical outcomes as equivalence testing 
achieved with two one-sided tests of substantial 
hypotheses "under optimal conditions", but oth-
erwise "the second generation p-value becomes 
difficult to interpret." The p values for testing 
substantial and non-substantial hypotheses, and 
their complements (1 minus the p value) appear 
to be at least as good as SGPVs and probably re-
tain the desirable qualities claimed for SGPVs 
(e.g., Stewart & Blume, 2019), when they are 
used to make inferences about the magnitude of 
an effect. I therefore do not recommend the use 
of SGPVs. 

I have limited this article to the issue of sam-
pling uncertainty in settings where the form of 
the statistical model and the variables to include 
in it have been decided. In some research disci-
plines (e.g., ecology), models may be complex, 
their development is a primary consideration, 
and there are methods for choosing amongst 
competing models. Such methods are part of ev-
idential statistics, an approach promoted as a 
successor to NHST and Bayesian statistics (e.g., 
Taper & Ponciano, 2016). Once a model has 
been selected with this approach, likelihood ra-
tios are used to compare hypotheses about ef-
fects. In my view, formal comparison of hypoth-
eses adds nothing to the necessary and sufficient 
evidence for magnitudes provided by the com-
patibility interval, the substantial and non-sub-
stantial hypotheses, and/or the relevant Bayesian 
probabilities.  

I have also limited this article to a comparison 
of methods for making assertions about the 
likelihood of magnitudes of effects. In clinical or 
practical settings, where substantial magnitudes 
of effects of interventions represent benefit and 
harm, the likelihoods could be combined 
qualitatively or quantitatively with the perceived 
or actual rewards of benefit, the perceived or 
actual costs of harm, and with the likelihoods, 
rewards and costs of any beneficial and harmful 
side effects. These are considerations of decision 
theory that are beyond the intended scope of this 
article. My aim has been only to provide and 
justify better alternatives to NHST. 

Whichever approach to sampling uncertainty 
you use, always be aware that your conclusions 

are usually about magnitudes of population 
mean effects. Effects on individuals are bound to 
be different, owing to individual differences and 
responses. You should include relevant subject 
characteristics as moderators in your statistical 
model or perform subgroup analyses to try to ac-
count for individual differences and responses, 
but there will always be residual errors repre-
senting unexplained variation, at least some of 
which arises from differences between individu-
als. The residual error can be used to make prob-
abilistic assertions about the effects on individu-
als in sample-based studies (Hopkins, 2018; 
Ross et al., 2019) and when monitoring individ-
uals (Hopkins, 2017).  

Finally, a conclusion, decision or probabilistic 
statement about the magnitude of an effect de-
rived from a sampling distribution is conditioned 
on assumptions about the data and the statistical 
model (Rafi & Greenland, 2020). The way in 
which violation of these assumptions could bias 
the outcome should be discussed and, where pos-
sible, investigated quantitatively (Lash et al., 
2014). A straightforward method is sensitivity 
analyses, in which the width and disposition of 
the compatibility interval relative to smallest im-
portants are determined for realistic worst-case 
violations (Hopkins, 2021b). 
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