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Statistical guidelines and expert statements are now available to assist in the 
analysis and reporting of studies in some biomedical disciplines.  We present 
here a more progressive resource for sample-based studies, meta-analyses 
and case studies in sports medicine and exercise science.  We offer forthright 
advice on the following controversial or novel issues: using precision of estima-
tion for inferences about population effects in preference to null-hypothesis 
testing, which is inadequate for assessing clinical or practical importance; justi-
fying sample size via acceptable precision or confidence for clinical decisions 
rather than via adequate power for statistical significance; showing standard 
deviations rather than standard errors of the mean, to better communicate 
magnitude of differences in means and non-uniformity of error; avoiding purely 
non-parametric analyses, which cannot provide inferences about magnitude 
and are unnecessary; using regression statistics in validity studies, in prefer-
ence to the impractical and biased limits of agreement; making greater use of 
qualitative methods to enrich sample-based quantitative projects; and seeking 
ethics approval for public access to the depersonalized raw data of a study, to 
address the need for more scrutiny of research and better meta-analyses.  
Advice on less contentious issues includes: using covariates in linear models to 
adjust for confounders, to account for individual differences, and to identify 
potential mechanisms of an effect; using log transformation to deal with non-
uniformity of effects and error; identifying and deleting outliers; presenting de-
scriptive, effect and inferential statistics in appropriate formats; and contending 
with bias arising from problems with sampling, assignment, blinding, measure-
ment error, and researchers' prejudices.  This article should advance the field 
by stimulating debate, promoting innovative approaches, and serving as a 
useful checklist for authors, reviewers and editors.  KEYWORDS: analysis, 
case, design, inference, qualitative, quantitative, sample 
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In response to the widespread misuse of sta-
tistics in research, several biomedical organiza-
tions have published statistical guidelines in 
their journals, including the International 
Committee of Medical Journal Editors 
(www.icmje.org), the American Psychological 
Association (Anonymous, 2001), and the Amer-
ican Physiological Society (Curran-Everett and 
Benos, 2004).  Expert groups have also pro-
duced statements about how to publish reports 
of various kinds of medical research (Table 1).  
Some medical journals now include links to 
these statements as part of their instructions to 
authors.   

In this article we provide our view of best 
practice for the use of statistics in sports medi-
cine and the exercise sciences.  The article is 
similar to those referenced in Table 1 but in-
cludes more practical and original material. It 
should achieve three useful outcomes.  First, it 
should stimulate interest and debate about con-
structive change in the use of statistics in our 
disciplines.  Secondly, it should help legitimize 
the innovative or controversial approaches that 
we and others sometimes have difficulty includ-
ing in publications.  Finally, it should serve as a 
statistical checklist for researchers, reviewers 
and editors at the various stages of the research 
process. Not surprisingly, some of the review-
ers of this article disagreed with some of our 
advice, so we emphasize here that the article 
represents neither a general consensus amongst 
experts nor editorial policy for this journal. 
Indeed, some of our innovations may take dec-
ades to become mainstream. 

Most of this article is devoted to advice on 
the various kinds of sample-based studies that 
comprise the bulk of research in our disciplines.  
Table 2 and the accompanying notes deal with 
issues common to all such studies, arranged in 
the order that the issues arise in a manuscript.  
This table applies not only to the usual studies 
of samples of individuals but also to meta-

analyses (in which the sample consists of vari-
ous studies) and quantitative non-clinical case 
studies (in which the sample consists of repeat-
ed observations on one subject).  Table 3, 
which should be used in conjunction with Table 
2, deals with additional advice specific to each 
kind of sample-based study and with clinical 
and qualitative single-case studies.  The sam-
ple-based studies in this table are arranged in 
the approximate descending order of quality of 
evidence they provide for causality in the rela-
tionship between a predictor and dependent 
variable, followed by the various kinds of 
methods studies, meta-analyses, and the single-
case studies. For more on causality and other 
issues in choice of design for a study, see Hop-
kins (2008). 

 
TABLE 2. Generic statistical advice for sample-based studies. 
ABSTRACT 
• State why you studied the effect(s). 
• State the design, including any randomizing and blind-

ing. 
• Characterize the subjects who contributed to the esti-

mate of the effect(s) (final sample size, sex, skill, sta-
tus…). 

• Ensure all numbers are either in numeric or graphical 

form in the Results section of the manuscript.   
• Show magnitudes and confidence intervals or limits of 

the most important effect(s).  Avoid P values.  [Note 1] 
• Make a probabilistic statement about clinical, practical, 

or mechanistic importance of the effect(s).  
• The conclusion must not be simply a restatement of 

results. 

Table 1.  Recent statements of best practice for reporting 
various kinds of biomedical research. 
Interventions (experiments) 

 

CONSORT: Consolidated Standards of Reporting Trials 
(Altman et al., 2001; Moher et al., 2001).  See consort-
statement.org for statements, explanations and exten-
sions to abstracts and to studies involving equivalence 
or non-inferiority, clustered randomization, harmful 
outcomes, non-randomized designs, and various kinds 
of intervention. 

Observational (non-experimental) studies 

 

STROBE: Strengthening the Reporting of Observational 
Studies in Epidemiology (Vandenbroucke et al., 2007; 
von Elm et al., 2007).  See strobe-statement.org for 
statements and explanations, and see HuGeNet.ca  for 
extension to gene-association studies. 

Diagnostic tests 

 
STARD: Standards for Reporting Diagnostic Accuracy 
(Bossuyt et al., 2003a; Bossuyt et al., 2003b). 

Meta-analyses 

 

QUOROM: Quality of Reporting of Meta-analyses 
(Moher et al., 1999).  MOOSE: Meta-analysis of Obser-
vational Studies in Epidemiology (Stroup et al., 2000).  
See also the Cochrane Handbook (at cochrane.org) and 
guidelines for meta-analysis of diagnostic tests (Irwig et 
al., 1994) and of gene-association studies (at 
HuGeNet.ca). 
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INTRODUCTION 
• Explain the need for the study.   

- Justify choice of a particular population of subjects.   
- Justify choice of design here, if it is one of the reasons 
for doing the study. 

• State an achievable aim or resolvable question about 
the magnitude of the effect(s). Avoid hypotheses. 
[Note 1] 

METHODS 
Subjects 
• Explain the recruitment process and eligibility criteria for 

acquiring the sample from a population.   
- Justify any stratification aimed at proportions of sub-
jects with certain characteristics in the sample. 

• Include permission for public access to depersonalized 
raw data in your application for ethics approval. [Note 2] 

Design 
• Describe any pilot study aimed at measurement proper-

ties of the variables and feasibility of the design. 
• To justify sample size, avoid adequate power for statisti-

cal significance. Instead, estimate or reference the 
smallest important values for the most important effects 
and use with one or more of the following approaches, 
taking into account any multiple inferences and quantifi-
cation of individual differences or responses 
[Notes 3, 4]:  
- adequate precision for a trivial outcome, smallest ex-
pected outcome, or comparison with a published out-
come;  

- acceptably low rates of wrong clinical decisions;  
- adequacy of sample size in similar published studies;   
- limited availability of subjects or resources (in which 
case state the smallest magnitude of effect your study 
could estimate adequately). 

• Detail the timings of all assessments and interventions. 
• See also Table 3 for advice on design of specific kinds 

of study. 
Measures 
• Justify choice of dependent and predictor variables in 

terms of practicality and measurement properties specif-
ic to the subjects and conditions of the study.  Use vari-
ables with the smallest errors. 

• Justify choice of potential moderator variables: subject 
characteristics or differences/changes in conditions or 
protocols that could affect the outcome and that are in-
cluded in the analysis as predictors to reduce confound-
ing and account for individual differences. 

• Justify choice of potential mediator variables: measures 
that could be associated with the dependent variable 
because of a causal link from a predictor and that are 
included in an analysis of the mechanism of the effect of 
the predictor.  [Note 5] 

• Consider including open-ended interviews or other 
qualitative methods, which afford serendipity and flexibil-
ity in data acquisition.  
- Use in a pilot phase aimed at defining purpose and 
methods, during data gathering in the project itself, and 
in a follow-up assessment of the project with stake-

holders. 
Analysis 
• Describe any initial screening for miscodings, for exam-

ple using stem-and-leaf plots or frequency tables. 
• Justify any imputation of missing values and associated 

adjustment to analyses. 
• Describe the model used to derive the effect.  [Note 6] 

- Justify inclusion or exclusion of main effects, polyno-
mial terms and interactions in a linear model.   

- Explain the theoretical basis for use of any non-linear 
model.  

- Provide citations or evidence from simulations that any 
unusual or innovative data-mining technique you used 
to derive effects (neural nets, genetic algorithms, deci-
sion trees, rule induction) should give trustworthy esti-
mates with your data.  

- Explain how you dealt with repeated measures or other 
clustering of observations. 

• Avoid purely non-parametric analyses. [Note 7] 
• If the dependent variable is continuous, indicate whether 

you dealt with non-uniformity of effects and/or error by 
transforming the dependent variable, by modeling differ-
ent errors in a single analysis, and/or by performing and 
combining separate analyses for independent groups.  
[Note 8] 

• Explain how you identified and dealt with outliers, and 
give a plausible reason for their presence. [Note 9] 

• Indicate how you dealt with the magnitude of the effect 
of linear continuous predictors or moderators, either as 
the effect of 2 SD, or as a partial correlation, or by pars-
ing into independent subgroups. [Note 10] 

• Indicate how you performed any subsidiary mechanisms 
analysis with potential mediator variables, either using 
linear modeling or (for interventions) an analysis of 
change scores.  [Note 5] 

• Describe how you performed any sensitivity analysis, in 
which you investigated quantitatively, either by simula-
tion or by simple calculation, the effect of error of meas-
urement and other potential sources of bias on the 
magnitude and uncertainty of the effect statistic(s).   

• Explain how you made inferences about the true (infi-
nite-sample) value of each effect.  [Note 1] 
- Show confidence intervals or limits.   
- Justify a value for the smallest important magnitude, 
then base the inference on the disposition of the confi-
dence interval relative to substantial magnitudes. 

- For effects with clinical or practical application, make a 
decision about utility by estimating chances of benefit 
and harm. 

- Avoid the traditional approach of statistical significance 
based on a null-hypothesis test using a P value. 

- Explain any adjustment for multiple inferences. 
[Note 3] 

• Include this statement, when appropriate: measures of 
centrality and dispersion are mean ± SD.   
- Add the following statement, when appropriate: for var-
iables that were log transformed before modeling, the 
mean shown is the back-transformed mean of the log 
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transform, and the dispersion is a coefficient of varia-
tion (%) or ×/÷ factor SD. 

- The range (minimum-maximum) is sometimes informa-
tive, but beware that it is strongly biased by sample 
size. 

- Avoid medians and other quantiles, except when pars-
ing into subgroups. 

- Never show standard errors of means.  [Note 11] 
• See also Table 3 for advice on analysis of specific kinds 

of study. 

RESULTS 
Subject Characteristics 
• Describe the flow of number of subjects from those who 

were first approached about participation through those 
who ended up providing data for the effects. 

• Show a table of descriptive statistics of variables in 
important groups of the subjects included in the final 
analysis, not the subjects you first recruited.   
- For numeric variables, show mean ± SD.  [Note 11] 
- For nominal variables, show percent of subjects. 
- Summarize the characteristics of dropouts (subjects 
lost to follow-up) if they represent a substantial propor-
tion (>10%) of the original sample or if their loss is like-
ly to substantially bias the outcome.  Be precise about 
which groups they were in when they dropped out and 
why they dropped out. 

• See also Table 3 for advice on reporting subject charac-
teristics in specific kinds of study. 

Outcome Statistics 
• Avoid all exact duplication of data between tables, 

figures, and text.   
• When adjustment for subject characteristics and other 

potential confounders is substantial, show unadjusted 
and adjusted outcomes. 

• Use standardized differences or changes in means to 
assess qualitative magnitudes of the differences, but 
there is generally no need to show the standardized 
values. [Note 1] 

• If the most important effect is unclear, provide a qualita-
tive interpretation of its uncertainty. (For example, it is 
unlikely to have a small beneficial effect and very unlike-
ly to be moderately beneficial.)  State the approximate 
sample size that would be needed to make it clear. 

• See also Table 3 for advice on outcome statistics in 
specific kinds of study. 

Numbers 
• Use the following abbreviations for units: km, m, cm, 

mm, µm, L, ml, µL, kg, g, mg, µg, pg, y, mo, wk, d, h, s, 
ms, A, mA, µA, V, mV, µV, N, W, J, kJ, MJ, °, °C, rad, 
kHz, Hz, mol, mmol, osmol, mosmol.  

• Insert a space between numbers and units, with the 
exception of % and °.  Examples: 70 ml.min-1.kg-1; 90%. 

• Insert a hyphen between numbers and units only when 
grammatically necessary: the test lasted 4 min; it was a 
4-min test. 

• Ensure that units shown in column or row headers of a 
table are consistent with data in the cells of the table. 

• Round up numbers to improve clarity. 
- Round up percents, SD, and the “±” version of confi-
dence limits to two significant digits.  A third digit is 
sometimes appropriate to convey adequate accuracy 
when the first digit is "1"; for example, 12.6% vs 13%.  
A single digit is often appropriate for small percents 
(<1%) and some subject characteristics. 

- Match the precision of the mean to the precision of the 
SD.  In these properly presented examples, the true 
values of the means are the same, but they are round-
ed differently to match their different SD: 4.567 ± 
0.071, 4.57 ± 0.71, 4.6 ± 7.1, 5 ± 71, 0 ± 710, 0 ± 
7100.   

- Similarly, match the precision of an effect statistic to 
that of its confidence limits. 

• Express a confidence interval using “to” (e.g., the effect 
was 3.2 units; 90% confidence interval -0.3 to 6.7 units) 
or express confidence limits using “±” (3.2 units; 90% 
confidence limits ±3.5 units).   
- Drop the wording “90% confidence interval/limits” for 
subsequent effects, but retain consistent punctuation 
(e.g., 2.1%; ±3.6%).  Note that there is a semicolon or 
comma before the “±” and no space after it for confi-
dence limits, but there is a space and no other punctu-
ation each side of a “±” denoting an SD.  Check your 
abstract and results sections carefully for consistency 
of such punctuation. 

- Confidence limits for effects derived from back-
transformed logs can be expressed as an exact 
×/÷factor by taking the square root of the upper limit 
divided by the lower limit.  Confidence limits of meas-
urement errors and of other SD can be expressed in 
the same way, but the resulting ×/÷factor becomes 
less accurate as degrees of freedom fall below 10.   

• When effects and confidence limits derived via log 
transformation are less than ~±25%, show as percent 
effects; otherwise show as factor effects.  Examples: -
3%, -14 to 6%;  17%, ±6%;  a factor of 0.46, 0.18 to 
1.15;  a factor of 2.3, ×/÷1.5. 

• Do not use P-value inequalities, which oversimplify 
inferences and complicate or ruin subsequent meta-
analysis. 
- Where brevity is required, replace with the ± or ×⁄÷ 
form of confidence limits.  Example: “active group 4.6 
units, control group 3.6 units (P>0.05)” becomes “ac-
tive group 4.6 units, control group 3.6 units (95% con-
fidence limits ±1.3 units)”. 

- If you accede to an editor’s demand for P values, use 
two significant digits for P≥0.10 and one for P<0.10. 
Examples: P=0.56, P=0.10, P=0.07, P=0.003, 
P=0.00006 (or 6E-5). 

Figures 
• Use figures sparingly and only to highlight key out-

comes.   
• Show a scattergram of individual values or residuals 

only to highlight the presence and nature of unusual 
non-linearity or non-uniformity. 
- Most non-uniformity can be summarized non-
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graphically, succinctly and more informatively with ap-
propriate SD for appropriate subgroups.   

- Do not show a scattergram of individual values that 
can be summarized by a correlation coefficient. (Ex-
ception: validity studies.) 

• Use line diagrams for means of repeated measure-
ments. Use bar graphs for single observations of means 
of groups of different subjects. 

• In line diagrams and scattergrams, choose symbols to 
highlight similarities and differences in groups or treat-
ments. 
- Make the symbols too large rather than too small.   
- Explain the meaning of symbols using a key on the 
figure rather than in the legend.   

- Place the key sensibly to avoid wasting space. 
- Where possible, label lines directly rather than via a 
key. 

• Use a log scale for variables that required log transfor-
mation when the range of values plotted is greater than 
~×1.25.   

• Show SD of group means to convey a sense of magni-
tude of effects.  [Note 11] 
- For mean change scores, convey magnitude by show-
ing a bar to the side indicating one SD of composite 
baseline scores. 

• In figures summarizing effects, show bars for confidence 
intervals rather than asterisks for P values.  
- State the level of confidence on the figure or in the 

legend. 
- Where possible, show the range of trivial effects on the 
figure using shading or dotted lines.  Regions defining 
small, moderate and large effects can sometimes be 
shown successfully. 

DISCUSSION 
• Avoid restating any numeric values exactly, other than 

to compare your findings with those in the literature.   
• Avoid introducing new data. 
• Be clear about the population to which your effect statis-

tics apply, but consider their wider applicability.   
• Interpret a mechanisms analysis cautiously.  [Note 5]   
• Assess the possible bias arising from the following 

sources: 
- confounding by non-representativeness or imbalance 
in the sampling or assignment of subjects, when the 
relevant subject characteristics could affect the de-
pendent variable and have not been adjusted for by in-
clusion in the model; 

- random or systematic error in a continuous variable or 
classification error in a nominal variable; [Note 12] 

- choosing the largest or smallest of several effects that 
have overlapping confidence intervals; [Note 3] 

- your prejudices or desire for an outcome, which can 
lead you to filter data inappropriately and misinterpret 
effects. 

 

Note 1: Inferences  
Inferences are evidence-based conclusions 

about the true nature of something. The tradi-
tional approach to inferences in research on 
samples is an assertion about whether the effect 
is statistically significant or “real”, based on a P 
value.  Specifically, when the range of uncer-
tainty in the true value of an effect represented 
by the 95% confidence interval does not include 
the zero or null value, P is <0.05, the effect 
“can’t be zero”, so the null hypothesis is reject-
ed and the effect is termed significant; other-
wise P is >0.05 and the effect is non-significant.  
A fundamental theoretical dilemma with this 
approach is the fact that the null hypothesis is 
always false; indeed, with a large enough sam-
ple size all effects are statistically significant.  
On a more practical level, the failure of this 
approach to deal adequately with the real-world 
importance of an effect is evident in the fre-
quent misinterpretation of a non-significant 
effect as a null or trivial effect, even when it is 
likely to be substantial.  A significant effect that 
is likely to be trivial is also often misinterpreted 
as substantial. 

A more realistic and intuitive approach to in-

ferences is based on where the confidence in-
terval lies in relation to threshold values for 
substantial effects rather than the null value 
(Batterham and Hopkins, 2006).  If the confi-
dence interval includes values that are substan-
tial in some positive and negative sense, such as 
beneficial and harmful, you state in plain lan-
guage that the effect could be substantially 
positive and negative, or more simply that the 
effect is unclear.  Any other disposition of the 
confidence interval relative to the thresholds 
represents a clear outcome that can be reported 
as trivial, positive or negative, depending on the 
observed value of the effect.  Such magnitude-
based inferences about effects can be made 
more accurate and informative by qualifying 
them with probabilities that reflect the uncer-
tainty in the true value: possibly harmful, very 
likely substantially positive, and so on. Note 
that even when an effect is unclear, you can 
often make a useful probabilistic statement 
about it (e.g., probably beneficial), and your 
findings should contribute to a meta-analysis.  
The qualitative probabilistic terms can be as-
signed using the following scale (Hopkins, 
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2007):  <0.5%, most unlikely, almost certainly 
not; 0.5-5%, very unlikely; 5-25%, unlikely, 
probably not; 25-75%, possibly; 75-95%, like-
ly, probably; 95-99.5%, very likely; >99.5%, 
most likely, almost certainly. Research on the 
perception of probability could result in small 
adjustments to this scale. 

Use of thresholds for moderate and large ef-
fects allows even more informative inferential 
assertions about magnitude, such as probably 
moderately positive, possibly associated with 
small increase in risk, almost certain large 
gain, and so on.  Uncertainty in magnitude can 
also be indicated by stating the magnitudes of 
the lower and upper confidence limits as a 
range (e.g., trivial-moderate benefit).  Some 
effect statistics have generally accepted magni-
tude thresholds for such assertions.  Thresholds 
of 0.1, 0.3 and 0.5 for small, moderate and large 
correlation coefficients suggested by Cohen 
(1988) can be augmented with 0.7 and 0.9 for 
very large and extremely large; these translate 
approximately into 0.20, 0.60, 1.20, 2.0 and 4.0 
for standardized differences in means (the mean 
difference divided by the appropriate between-
subject SD). The notion of 1, 3, 5, 7 and 9 in 
every 10 events or cases being attributable to an 
effect gives rise to thresholds of 1.11, 1.43, 2.0, 
3.3, and 10 (10/9, 10/7, 10/5, 10/3 and 10/1) 
and their inverses (0.9, 0.7, 0.5, 0.3, 0.1) for 
ratios of proportions (which must be converted 
to odds for analysis), ratios of hazards and rati-
os of counts. Similarly, the notion of an extra 
medal on average in 1, 3, 5, 7 and 9 competi-
tions per 10 competitions provides thresholds 
for change in a top athlete’s competition time or 
distance of 0.3, 0.9, 1.6, 2.5 and 4.0 of the with-
in-athlete variation between competitions 
(Hopkins et al., 1999 and WGH, unpublished 
observations). Thresholds have been suggested 
for some diagnostic statistics (Jaeschke et al., 
1994), but more research is needed on these and 
on thresholds for the more usual measures of 
validity and reliability. 

An appropriate default level of confidence 
for the confidence interval is 90%, because it 
implies quite reasonably that an outcome is 
clear if the true value is very unlikely to be 
substantial in a positive and/or negative sense.   
Use of 90% rather than 95% has also been ad-
vocated as a way of discouraging readers from 
reinterpreting the outcome as significant or 
non-significant at the 5% level (Sterne and 

Smith, 2001).  In any case, a symmetrical con-
fidence interval of whatever level is appropriate 
for making only non-clinical or mechanistic 
inferences.  An inference or decision about 
clinical or practical utility should be based on 
probabilities of harm and benefit that reflect the 
greater importance of avoiding use of a harmful 
effect than failing to use a beneficial effect.  
Suggested default probabilities for declaring an 
effect clinically beneficial are <0.5% (most 
unlikely) for harm and >25% (possible) for 
benefit (Hopkins, 2007). A clinically unclear 
effect is therefore possibly beneficial (>25%) 
with an unacceptable risk of harm (>0.5%).  
Equivalently, an unclear effect occurs when an 
asymmetric confidence interval that is a 99% 
interval on the harmful side of an observed 
effect and a 50% interval on the beneficial side 
overlaps into harmful and beneficial values. 
(The disposition of an asymmetric confidence 
interval also underlies the appropriate interpre-
tation of statistical significance.) The probabili-
ties of >25% for benefit and <0.5% for harm 
correspond to a minimum ratio of 66 for odds 
of benefit to odds of harm, a suggested default 
when sample sizes are sub- or supra-optimal 
(Hopkins, 2007). Thus you could decide to 
make use of an effect with an 80% chance of 
benefit and a 5% chance of harm, because the 
odds of benefit outweigh the odds of harm by a 
factor of 76, which is >66. 

Magnitude-based inferences as outlined 
above represent a subset of the kinds of infer-
ence that are possible using so-called Bayesian 
statistics, in which the researcher combines the 
study outcome with uncertainty in the effect 
prior to the study to get the posterior (updated) 
uncertainty in the effect.  A qualitative version 
of this approach is an implicit and important 
part of the Discussion section of most studies, 
but in our view specification of the prior uncer-
tainty is too subjective to apply the approach 
quantitatively.  Researchers may also have 
difficulty accessing and using the computation-
al procedures.  On the other hand, confidence 
limits and probabilities related to threshold 
magnitudes can be derived readily via a spread-
sheet (Hopkins, 2007) by making the same 
assumptions about sampling distributions that 
statistical packages use to derive P values.  
Bootstrapping, in which a sampling distribution 
for an effect is derived by resampling from the 
original sample thousands of times, also pro-
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vides a robust approach to computing confi-
dence limits and magnitude-based probabilities 
when data or modeling are too complex to de-
rive a sampling distribution analytically. 
Note 2: Access to Data 

Public access to depersonalized data, when 
feasible, serves the needs of the wider commu-
nity by allowing more thorough scrutiny of data 
than that afforded by peer review and by lead-
ing to better meta-analyses. Make this statement 
in your initial application for ethics approval, 
and state that the data will be available indefi-
nitely at a website or on request without com-
promising the subjects’ privacy. 
Note 3: Multiple Inferences 

Any conclusive inference about an effect 
could be wrong, and the more effects you inves-
tigate, the greater the chance of making an er-
ror.  If you test multiple hypotheses, there is 
inflation of the Type I error rate:  an increase in 
the chance that a null effect will turn up statisti-
cally significant. The usual remedy of making 
the tests more conservative is not appropriate 
for the most important pre-planned effect, it is 
seldom applied consistently to all other effects 
reported in a paper, and it creates problems for 
meta-analysts and other readers who want to 
assess effects in isolation.  We therefore concur 
with others (e.g., Perneger, 1998) who advise 
against adjusting the Type I error rate or confi-
dence level of confidence intervals for multiple 
effects.   

For several important clinical or practical ef-
fects, you should nevertheless constrain the 
increase in the chances of making clinical er-
rors.  Overall chances of benefit and harm for 
several interdependent effects can be estimated 
properly by bootstrapping, but a more practical 
and conservative approach is to assume the 
effects are independent and to estimate errors 
approximately by addition.  The sum of the 
chances of harm of all the effects that separate-
ly are clinically useful should not exceed 0.5% 
(or your chosen maximum rate for Type 1 clini-
cal errors–see Note 4); otherwise you should 
declare fewer effects useful and acknowledge 
that your study is underpowered.  Your study is 
also underpowered if the sum of chances of 
benefit of all effects that separately are not 
clinically useful exceeds 25% (or your chosen 
Type 2 clinical error rate). When your sample 
size is small, reduce the chance that the study 
will be underpowered by designing and analyz-

ing it for fewer effects.    
A problem with inferences about several ef-

fects with overlapping confidence intervals is 
misidentification of the largest (or smallest) and 
upward (or downward) bias in its magnitude. In 
simulations the bias is of the order of the aver-
age standard error of the outcome statistic, 
which is approximately one-third the width of 
the average 90% confidence interval (WGH, 
unpublished observations). Acknowledge such 
bias when your aim is to quantify the largest or 
smallest of several effects. 
Note 4: Sample Size 

Sample sizes that give acceptable precision 
with 90% confidence limits are similar to those 
based on a Type 1 clinical error of 0.5% (the 
chance of using an effect that is harmful) and a 
Type 2 clinical error of 25% (the chance of not 
using an effect that is beneficial).  The sample 
sizes are approximately one-third those based 
on the traditional approach of an 80% chance of 
statistical significance at the 5% level when the 
true effect has the smallest important value.  
Until hypothesis testing loses respectability, 
you should include the traditional and new 
approaches in applications for ethical approval 
and funding.  

Whatever approach you use, sample size 
needs to be quadrupled to adequately estimate 
individual differences or responses and effects 
of covariates on the main effect.  Larger sam-
ples are also needed to keep clinical error rates 
for clinical or practical decisions acceptable 
when there is more than one important effect in 
a study (Note 3).  See Reference (Hopkins, 
2006a) for a spreadsheet and details of these 
and many other sample-size issues. 
Note 5: Mechanisms 

In a mechanisms analysis, you determine the 
extent to which a putative mechanism variable 
mediates an effect through being in a causal 
chain linking the predictor to the dependent 
variable of the effect.  For an effect derived 
from a linear model, the contribution of the 
mechanism (or mediator) variable is represent-
ed by the reduction in the effect when the vari-
able is included in the model as another predic-
tor.  Any such reduction is a necessary but not 
sufficient condition for the variable to contrib-
ute to the mechanism of the effect, because a 
causal role can be established definitively only 
in a separate controlled trial designed for that 
purpose. 
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For interventions, you can also examine a 
plot of change scores of the dependent variable 
vs those of potential mediators, but beware that 
a relationship will not be obvious in the scatter-
gram if individual responses are small relative 
to measurement error.  Mechanism variables are 
particularly useful in unblinded interventions, 
because evidence of a mechanism that cannot 
arise from expectation (placebo or nocebo) 
effects is also evidence that at least part of the 
effect of the intervention is not due to such 
effects. 
Note 6: Linear Models 

An effect statistic is derived from a model 
(equation) linking a dependent (the “Y” varia-
ble) to a predictor and usually other predictors 
(the “X” variables or covariates).  The model is 
linear if the dependent can be expressed as a 
sum of terms, each term being a coefficient 
times a predictor or a product of predictors 
(interactions, including polynomials), plus one 
or more terms for random errors.  The effect 
statistic is the predictor’s coefficient or some 
derived form of it.  It follows from the additive 
nature of such models that the value of the ef-
fect statistic is formally equivalent to the value 
expected when the other predictors in the model 
are held constant. Linear models therefore au-
tomatically provide adjustment for potential 
confounders and estimates of the effect of po-
tential mechanism variables. A variable that 
covaries with a predictor and dependent varia-
ble is a confounder if it causes some of the 
covariance and is a mechanism if it mediates it.  
The reduction of an effect when such a variable 
is included in a linear model is the contribution 
of the variable to the effect, and the remaining 
effect is independent of (adjusted for) the varia-
ble. 

The usual models are linear and include: re-
gression, ANOVA, general linear and mixed for 
a continuous dependent; logistic regression, 
Poisson regression, negative binomial regres-
sion and generalized linear modeling for events 
(a dichotomous or count dependent); and pro-
portional-hazards regression for a time-to-event 
dependent.  Special linear models include factor 
analysis and structural equation modeling. 

For repeated measures or other clustering of 
observations of a continuous dependent varia-
ble, avoid the problem of interdependence of 
observations by using within-subject modeling, 
in which you combine each subject's repeated 

measurements into a single measure (unit of 
analysis) for subsequent modeling; alternative-
ly, account for the interdependence using the 
more powerful approach of mixed (multilevel 
or hierarchical) modeling, in which you esti-
mate different random effects or errors within 
and between clusters. Avoid repeated-measures 
ANOVA, which sometimes fails to account 
properly for different errors.  For clustered 
event-type dependents (proportions or counts), 
use generalized estimation equations. 
Note 7: Non-parametric Analysis 

A requirement for deriving inferential statis-
tics with the family of general linear models is 
normality of the sampling distribution of the 
outcome statistic.  Although there is no test that 
data meet this requirement, the central-limit 
theorem ensures that the sampling distribution 
is close enough to normal for accurate infer-
ences, even when sample sizes are small (~10) 
and especially after a transformation that reduc-
es any marked skewness in the dependent vari-
able or non-uniformity of error. Testing for 
normality of the dependent variable and any 
related decision to use purely non-parametric 
analyses (which are based on rank transfor-
mation and do not use linear or other parametric 
models) are therefore misguided. Such analyses 
lack power for small sample sizes, do not per-
mit adjustment for covariates, and do not permit 
inferences about magnitude.  Rank transfor-
mation followed by parametric analysis can be 
appropriate (Note 8), and ironically, the distri-
bution of a rank-transformed variable is grossly 
non-normal. 
Note 8: Non-uniformity 

Non-uniformity of effect or error in linear 
models can produce incorrect estimates and 
confidence limits.  Check for non-uniformity by 
comparing standard deviations of the dependent 
variable in different subgroups or by examining 
plots of the dependent variable or its residuals 
for differences in scatter (heteroscedasticity) 
with different predicted values and/or different 
values of the predictors. 

Differences in standard deviations or errors 
between groups can be taken into account for 
simple comparisons of means by using the une-
qual-variances t statistic.  With more complex 
models use mixed modeling to allow for and 
estimate different standard deviations in differ-
ent groups or with different treatments. For a 
simpler robust approach with independent sub-
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groups, perform separate analyses then compare 
the outcomes using a spreadsheet (Hopkins, 
2006b). 

Transformation of the dependent variable is 
another approach to reducing non-uniformity, 
especially when there are differences in scatter 
for different predicted values.  For many de-
pendent variables, effects and errors are uni-
form when expressed as factors or percents; log 
transformation converts these to uniform addi-
tive effects, which can be modeled linearly then 
expressed as factors or percents after back 
transformation. Always use log transformation 
for such variables, even when a narrow range in 
the dependent variable effectively eliminates 
non-uniformity. 

Rank transformation eliminates non-
uniformity for most dependent variables and 
models, but it results in loss of precision with a 
small sample size and should therefore be used 
as a last resort.  To perform the analysis, sort all 
observations by the value of the dependent 
variable, assign each observation a rank (con-
secutive integer), then use the rank as the de-
pendent variable in a liner model.  Such anal-
yses are often referred to incorrectly as non-
parametric. 

Use the transformed variable, not the raw 
variable, to gauge magnitudes of correlations 
and of standardized differences or changes in 
means. Back-transform the mean effect to a 
mean in raw units and its confidence limits to 
percents or factors (for log transformation) or to 
raw units at the mean of the transformed varia-
ble or at an appropriate value of the raw varia-
ble (for all other transformations). When analy-
sis of a transformed variable produces impossi-
ble values for an effect or a confidence limit 
(e.g., a negative rank with the rank transfor-
mation), the assumption of normality of the 
sampling distribution of the effect is violated 
and the analysis is therefore untrustworthy. 
Appropriate use of bootstrapping avoids this 
problem. 
Note 9: Outliers 

Outliers for a continuous dependent variable 
represent a kind of non-uniformity that appears 
on a plot of residuals vs predicteds as individual 
points with much larger residuals than other 
points. To delete the outliers in an objective 
fashion, set a threshold by first standardizing 
the residuals (dividing by their standard devia-
tion).  The resulting residuals are t statistics, 

and with the assumption of normality, a thresh-
old for values that would occur rarely (<5% of 
the time is a good default) depends on sample 
size.  Approximate sample sizes and thresholds 
for the absolute value of t are:  <~50, >3.5;  
~500, >4.0;  ~5000, >4.5;  ~50,000, >5.0.  
Some packages identify outliers more accurate-
ly using statistics that account for the lower 
frequency of large residuals further away from 
the mean predicted value of the dependent.  
Note 10: Effect of Continuous Predictors 

The use of two standard deviations (SD) to 
gauge the effect of a continuous predictor en-
sures congruence between Cohen's threshold 
magnitudes for correlations and standardized 
differences (Note 1). Two SD of a normally 
distributed predictor also corresponds approxi-
mately to the mean separation of lower and 
upper tertiles (2.2 SD). The SD is ideally the 
variation in the predictor after adjustment for 
other predictors; the effect of 2 SD in a correla-
tional study is then equivalent to, and can be 
replaced by, the partial correlation (the square 
root of the fraction of variance explained by the 
predictor after adjustment for all other predic-
tors). 

A grossly skewed predictor can produce in-
correct estimates or confidence limits, so it 
should be transformed to reduce skewness.  Log 
transformation is often suitable for skewed 
predictors that have only positive values; as 
simple linear predictors their effects are then 
expressed per factor or percent change of their 
original units. Alternatively, a skewed predictor 
can be parsed into quantiles (usually 2-5 sub-
groups with equal numbers of observations) and 
included in the model as a nominal variable or 
as an ordinal variable (a numeric variable with 
integer values).  Parsing is also appropriate for 
a predictor that is likely to have a non-linear 
effect not easily or realistically modeled as a 
polynomial. 
Note 11: SEM vs SD 

The standard error of the mean (SEM = 
SD/√(group sample size)) is the sampling varia-
tion in a group mean, which is the expected 
typical variation in the mean from sample to 
sample.  Some researchers argue that, as such, 
this measure communicates uncertainty in the 
mean and is therefore preferable to the SD.  A 
related widespread belief is that non-overlap of 
SEM bars on a graph indicates a difference that 
is statistically significant at the 5% level.  Even 
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if statistical significance was the preferred ap-
proach to inferences, this belief is justified only 
when the SEM in the two groups are equal, and 
for comparisons of changes in means, only 
when the SEM are for means of change scores.  
Standard error bars on a time-series graph of 
means of repeated measurements thus convey a 
false impression of significance or non-
significance, and therefore, to avoid confusion, 
SEM should not be shown for any data.  In any 
case, researchers are interested not in the uncer-
tainty in a single mean but in the uncertainty of 
an effect involving means, usually a simple 
comparison of two means.  Confidence inter-
vals or related inferential statistics are used to 
report uncertainty in such effects, making the 
SEM redundant and inferior.  

The above represents compelling arguments 
for not using the SEM, but there are even more 
compelling arguments for using the SD.  First, 
it helps to assess non-uniformity, which mani-
fests as different SD in different groups.  Sec-
ondly, it can signpost the likely need for log 
transformation, when the SD of a variable that 
can have only positive values is of magnitude 
similar to or greater than the mean.  Finally and 
most importantly, the SD communicates the 
magnitude of differences or changes between 
means, which by default should be assessed 
relative to the usual between-subject SD (Note 
1).  The manner in which the SEM depends on 
sample size makes it unsuitable for any of these 
applications, whereas the SD is practically un-
biased for sample sizes ~10 or more (Gurland 
and Tripathi, 1971). 

Note 12: Error-related Bias 
Random error or random misclassification in 

a variable attenuates effects involving the vari-
able and widens the confidence interval.  (Ex-
ception: random error in a continuous depend-
ent variable does not attenuate effects of predic-
tors on means of the variable.)  After adjust-
ment of the variable for any systematic differ-
ence from a criterion in a validity study with 
subjects similar to those in your study, it fol-
lows from statistical first principles that the 
correction for attenuation of an effect derived 
directly from the variable’s coefficient in a 
linear model is 1/v2, where v is the validity 
correlation coefficient; the correction for a 
correlation with the variable is 1/v.  In this 
context, a useful estimate for the upper bound 
of v is the square root of the short-term reliabil-
ity correlation. 

When one variable in an effect has systemat-
ic error or misclassification that is substantially 
correlated with the value of the other variable, 
the effect will be biased up or down, depending 
on the correlation.  Example:  a spurious bene-
ficial effect of physical activity on health could 
arise from healthier people exaggerating their 
self-reported activity.   

Substantial random or systematic error of 
measurement in a covariate used to adjust for 
confounding results in partial or unpredictable 
adjustment respectively and thereby renders 
untrustworthy any claim about the presence or 
absence of the effect after adjustment. This 
problem applies also to a mechanisms analysis 
involving such a covariate. 

 
TABLE 3. Additional statistical advice for specific sample-based and single-case designs. 
INTERVENTIONS 
Design 
• Justify any choice between pre-post vs post-only and 

between parallel-group vs crossover designs.  Avoid 
single-group (uncontrolled) designs if possible.  See 
Reference (Batterham and Hopkins, 2005) for more. 

• Investigate more than one experimental treatment only 
when sample size is adequate for multiple comparisons. 
[Note 4] 

• Explain any randomization of subjects to treatment 
groups or treatment sequences, any stratification (bal-
ancing of numbers in subject-characteristic subgroups), 
and any minimization of differences of means of subject 
characteristics in treatment groups.  State whether/how 
randomization to groups or sequences was concealed 
from researchers.   

• Detail any blinding of subjects and researchers. 

• Detail the timing and nature of assessments and inter-
ventions. 

Analysis 
• Indicate how you included, excluded or adjusted for 

subjects who showed substantial non-compliance with 
protocols or treatments or who were lost to follow-up. 

• In a parallel-groups trial, estimate and adjust for the 
potential confounding effect of any substantial differ-
ences in mean characteristics between groups. 
- In pre-post trials in particular, estimate and adjust for 
the effect of baseline score of the dependent variable 
on the treatment effect. Such adjustment eliminates 
any effect of regression to the mean, whereby a differ-
ence between groups at baseline arising from error of 
measurement produces an artifactual treatment effect. 

Subject Characteristics 
• For continuous dependent and mediator variables, show 
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mean and SD in the subject-characteristics table only at 
baseline. 

Outcome Statistics: Continuous Dependents 
(For event-type dependents, see the section below on 
prospective cohort studies.) 

• Baseline means and SD that appear in text or a table 
can be duplicated in a line diagram summarizing means 
and SD at all assay times 

• Show means and SD of change scores in each group.   
• Show the unadjusted and any relevant adjusted differ-

ences between the mean changes in treatment and con-
trol (or exposed and unexposed) groups, with confi-
dence limits. 

• Show the standard error of measurement derived from 
repeated baseline tests and/or pre-post change scores 
in a control group. 

• Include an analysis for individual responses derived 
from the SD of the change scores.  In post-only crosso-
vers this analysis requires an assumption about, or sep-
arate estimation of, error of measurement over the time 
between treatments. 

Discussion 
• If there was lack or failure of blinding, estimate bias due 

to placebo and nocebo effects (outcomes better and 
worse than no treatment arising purely from expectation 
with the experimental and control treatments respective-
ly). 

COHORT STUDIES 
Design 
• Describe the methods of follow-up. 
Analysis 
• Indicate how you included, excluded or adjusted for 

subjects who showed substantial non-compliance with 
protocols or treatments or who were lost to follow-up. 

• Adjust effects for any substantial difference between 
groups at baseline. 

Outcome Statistics: Event Dependents 
(For continuous dependents, see the section above on 
interventions.) 

• When the outcome is assessed at fixed time points, 
show percentage of subjects in each group who experi-
enced the event at each point.   

• When subjects experience multiple events, show raw or 
factor means and SD of counts per subject. 

• When the outcome is time to event, display survival 
curves for the treatment or exposure groups. 

• Show effects as the risk, odds or hazard ratios adjusted 
for relevant subject characteristics.   
- Present them also in a clinically meaningful way by 
making any appropriate assumptions about incidence, 
prevalence, or exposure to convert the ratios to risks 
(proportions affected) and risk difference between 
groups or for different values of predictors, along with 
confidence limits for the risk ratio and/or risk difference 
(Hopkins et al., 2007).   

- Adjusted mean time to event and its ratio or difference 
between groups is a clinically useful way to present 

some outcomes. 
Discussion 
• Take into account the fact that confounding can bias the 

risk ratio by as much as ×⁄÷2.0-3.0 in most cohort and 
case-control studies (Taubes, 1995). 

CASE-CONTROL STUDIES 
Design 
• Explain how you tried to choose controls from the same 

population giving rise to the cases.   
• Justify the case:control ratio. (Note that >5 controls per 

case or >5 cases per control give no useful increase in 
precision.)   

• Case-crossovers: describe how you defined the time 
windows for assessing case and control periods. 

Outcome Statistics 
• Present risk-factor outcomes in a clinically meaningful 

way by converting the odds ratio (which is a hazard ratio 
with incidence density sampling) to a risk ratio and/or 
risk difference between control and exposed subjects in 
an equivalent cohort study over a realistic period 
(Hopkins et al., 2007). 

Discussion 
• See the Discussion point on confounding in cohort 

studies. 
• Estimate bias due to under-matching, over-matching or 

other mis-matching of controls. 

CROSS-SECTIONAL STUDIES  
Outcome Statistics 
• Show simple unadjusted effects and effects adjusted for 

all other predictors in the model. 

STRUCTURAL EQUATION MODELING 
Analysis 
• Specify the measurement and structural models using a 

path diagram.   
• Explain the estimation method and the strategy for 

assessing goodness of fit. 
• Demonstrate that all parameters were estimable.  

MEASUREMENT STUDIES: VALIDITY 
Design 
• Justify the cost-effectiveness of the criterion measure, 

citing studies of its superiority and measurement error. 
Analysis 
• Use linear or non-linear regression to estimate a calibra-

tion equation, a standard error of the estimate, and a 
validity correlation coefficient.   
- For criterion and practical measures in the same met-
ric, use the calibration equation to estimate bias in the 
practical measure over its range.   

- Do not calculate limits of agreement or present a 
Bland-Altman plot. [Note 13] 

MEASUREMENT STUDIES: DIAGNOSTIC TESTS 
Design 
• Document the diagnostic accuracy of the method or 

combination of methods used as the reference standard. 
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Analysis 
• Calculate the following diagnostic measures, all of which 

can be useful:  the validity correlation coefficient, the 
kappa coefficient, sensitivity, specificity, positive and 
negative predictive values, positive and negative diag-
nostic likelihood ratios, and diagnostic odds ratio.   

• For a continuous measure, calculate area under the 
ROC curve and give the above diagnostic measures for 
an appropriate threshold. 

MEASUREMENT STUDIES: RELIABILITY 
Design 
• Justify number of trials, raters, items of equipment 

and/or subjects needed to estimate the various within 
and between standard deviations. 

• Justify times between trials to establish effects due to 
familiarization (habituation), practice, learning, potentia-
tion, and/or fatigue. 

Analysis 
• Assess habituation and other order-dependent effects in 

simple reliability studies by deriving statistics for con-
secutive pairs of measurements. 

• The reliability statistics are the change in the mean 
between measurements, the standard error of meas-
urement (typical error), and the appropriate intraclass 
correlation coefficient (or the practically equivalent test-
retest Pearson correlation).   
- Do not abbreviate standard error of measurement as 
SEM, which is confused with standard error of the 
mean.   

- Avoid limits of agreement.  [Note 13] 
• With several levels of repeated measurement (e.g., 

repeated sets, different raters for the same subjects) 
use judicious averaging or preferably mixed modeling to 
estimate different errors as random effects. 

MEASUREMENT STUDIES: FACTOR STRUCTURE 
Design 
• Describe any pilot work with experts and subjects to 

develop or modify wording in any exploratory factor 
analysis. 

Analysis 
• Specify the analytic approach (principal components or 

principal axes), the criteria used to extract factors, the 
rotation method and factor-loading cutoffs for selection 
of variables for each factor, and the communalities to 
justify exclusion of items from the instrument. 

• For confirmatory factor analysis use an appropriate 
structural equation model. 

• For each factor calculate the square root of Cronbach’s 
alpha, which is an upper bound for the validity correla-
tion. 

META-ANALYSES 
Design 
• Describe the search strategy and inclusion criteria for 

identifying relevant studies.   
• Explain why you excluded specific studies that other 

researchers might consider worthy of inclusion. 

Analysis 
• Explain how you reduced study-estimates to a common 

metric.   
- Conversion to factor effects (followed by log transfor-
mation) is often appropriate for means of continuous 
variables.  

- Avoid standardization (dividing each estimate by the 
between-subject SD) until after the analysis, using an 
appropriate between-subject composite SD derived 
from some or all studies. 

- Hazard ratios are often best for event outcomes. 
• Explain derivation of the weighting factor (inverse of the 

sampling variance, or adjusted sample size if sufficient 
authors do not provide sufficient inferential information). 

• Avoid fixed-effect meta-analysis.  State how you per-
formed a random-effect analysis to allow for real differ-
ences between study-estimates. With sufficient studies, 
adjust for study characteristics by including them as 
fixed effects, and account for any clustering of study-
estimates by including extra random effects. 

• Use a plot of standard error or 1/√(sample size) vs 
study-estimate or preferably the t statistic of the solution 
of each random effect to explore the possibility of publi-
cation bias and to identify outlier study-estimates.  

• To gauge the effect of 2 SD of predictors [Note 10] 
representing mean subject characteristics, use an ap-
propriate mean of the between-subject SD from selected 
or all studies, not the SD of the study means.  

Study Characteristics 
• Show a table of study characteristics, study-estimates, 

inferential information (provided by authors) and confi-
dence limits (computed by you, when necessary).   
- If the table is too large for publication, make it available 
at a website or on request.   

- A one-dimensional plot of effects and confidence inter-
vals (“forest plot”) represents unnecessary duplication 
of data in the above table. 

• Show a scatterplot of study-estimates with confidence 
limits to emphasize a relationship with a study charac-
teristic. 

SINGLE-CASE STUDIES: QUANTITATIVE NON-CLINICAL 
Design 
• Regard these as sample-based studies aimed at an 

inference about the value of an effect statistic in the 
population of repeated observations on a single subject.   

• Justify the choice of design by identifying the closest 
sample-based design.   

• Take into account within-subject error when estimating 
“sample size” (number of repeated observations). 

• State the smallest important effect, which should be the 
same as for a usual sample-based study.   

Analysis 
• Account for trends in consecutive observations with 

appropriate predictors.   
- Check for any remaining autocorrelation, which will 
appear as a trend in the scatter of a plot of residuals vs 
time or measurement number.   

- Use an advanced modeling procedure that allows for 
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autocorrelation only if there is a trend that modeling 
can’t remove. 

• Make it clear that the inferences apply only to your 
subject and possibly only to a certain time of year or 
state. 

• Perform separate single-subject analyses when there is 
more than one case.  With an adequate sample of cas-
es, use the usual sample-based repeated-measures 
analyses. 

SINGLE-CASE STUDIES: CLINICAL 
Case Description 
• For a difficult differential diagnosis, justify the use of 

appropriate tests by reporting their predictive power, 
preferably as positive and negative diagnostic likelihood 
ratios. 

Discussion 
• Where possible, use a quantitative Bayesian (sequential 

probabilistic) approach to estimate the likelihoods of 
contending diagnoses. 

SINGLE-CASE STUDIES: QUALITATIVE 
Methods 
• State and justify your ideological paradigm (e.g., 

grounded theory). 
• Describe your methods for gathering the information, 

including any attempt to demonstrate congruence of 
data and concepts by triangulation (use of different 
methods). 

• Describe your formal approach to organizing the infor-
mation (e.g., dimensions of form, content or quality, 
magnitude or intensity, context, and time (Hanin, 2003)).   

• Describe how you reached saturation, when ongoing 
data collection and analysis generated no new catego-
ries or concepts.   

• Describe how you solicited feedback from respondents, 
peers and experts to address trustworthiness of the out-
come. 

• Analyze a sufficiently large sample of cases or assess-
ments of an individual by coding the characteristics and 
outcomes of each case (assessment) into variables and 
by following the advice for the appropriate sample-
based study. [Note 14] 

Results and Discussion 
• Address the likelihood of alternative interpretations or 

outcomes. 
• To generalize beyond a single case or assessment, 

consider how differences in subject or case characteris-
tics could have affected the outcome. 

 

Note 13: Limits of Agreement 
Bland and Altman introduced limits of 

agreement (defining a reference interval for the 
difference between measures) and a plot of 
subjects' difference vs mean scores of the 
measures (for checking relative bias and non-
uniformity) to address what they thought were 
shortcomings arising from misuse of validity 
and reliability correlation coefficients in meas-
urement studies.  Simple linear regression nev-
ertheless provides superior statistics in validity 
studies, for the following reasons: the standard 
error of the estimate and the validity correlation 
can show that a measure is suitable for clinical 
assessment of individuals and for sample-based 
research, yet the measure would not be inter-
changeable with a criterion according to the 
limits of agreement;  the validity correlation 
provides a correction for attenuation (see Note 
12), but no such correction is available with 
limits of agreement;  the regression equation 
provides trustworthy estimates of the bias of 
one measure relative to the other, whereas the 
Bland-Altman plot shows artifactual bias for 
measures with substantially different errors 
(Hopkins, 2004);  regression statistics can be 
derived in all validity studies, whereas limits of 
agreement can be derived from difference 
scores in only a minority of validity studies 

(“method-comparison” studies, where both 
measures are in the same units); finally, limits 
of agreement in a method-comparison study of 
a new measure with an existing imprecise 
measure provide no useful information about 
the validity of the new measure, whereas re-
gression validity statistics can be combined 
with published validity regression statistics for 
the imprecise measure to correctly estimate 
validity regression statistics for the new meas-
ure.  

Arguments have also been presented against 
the use of limits of agreement as a measure of 
reliability (Hopkins, 2000). Additionally, data 
generally contain several sources of random 
error, which are invariably estimated as vari-
ances in linear models then combined and ex-
pressed as standard errors of measurement 
and/or correlations. Transformation to limits of 
agreement is of no further clinical or theoretical 
value. 
Note 14: Qualitative Inferences 

Some qualitative researchers believe that it is 
possible to use qualitative methods to general-
ize from a sample of qualitatively analyzed 
cases (or assessments of an individual) to a 
population (or the individual generally).  Others 
do not even recognize the legitimacy of gener-
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alizing. In our view, generalizing is a funda-
mental obligation that is best met quantitatively, 
even when the sample is a series of qualitative 
case studies or assessments.  
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